Loading…

Chaos synchronization of coupled neurons under electrical stimulation via robust adaptive fuzzy control

This paper presents a robust adaptive fuzzy controller to synchronize two gap junction coupled chaotic FitzHugh–Nagumo (FHN) neurons under external electrical stimulation. A variable universe adaptive fuzzy approximator is used to approximate the nonlinear uncertain function of the synchronization e...

Full description

Saved in:
Bibliographic Details
Published in:Nonlinear dynamics 2010-09, Vol.61 (4), p.847-857
Main Authors: Che, Yan-Qiu, Wang, Jiang, Chan, Wai-Lok, Tsang, Kai-Ming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c349t-cf1e7fcaf1353d89ed426f5a1365e92e5640b718da399d0706d2f9823248fdbb3
cites cdi_FETCH-LOGICAL-c349t-cf1e7fcaf1353d89ed426f5a1365e92e5640b718da399d0706d2f9823248fdbb3
container_end_page 857
container_issue 4
container_start_page 847
container_title Nonlinear dynamics
container_volume 61
creator Che, Yan-Qiu
Wang, Jiang
Chan, Wai-Lok
Tsang, Kai-Ming
description This paper presents a robust adaptive fuzzy controller to synchronize two gap junction coupled chaotic FitzHugh–Nagumo (FHN) neurons under external electrical stimulation. A variable universe adaptive fuzzy approximator is used to approximate the nonlinear uncertain function of the synchronization error system. Based on the Lyapunov stability theory, the obtained adaptive laws of fuzzy algorithm not only guarantee the stability of the closed loop error system, but also attenuate the influence of matching error and external disturbance on synchronization error to an arbitrarily desired level. Chaos synchronization is obtained by proper choice of the control parameters. The simulation results demonstrate the effectiveness of the proposed control method.
doi_str_mv 10.1007/s11071-010-9691-9
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671258151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259469035</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-cf1e7fcaf1353d89ed426f5a1365e92e5640b718da399d0706d2f9823248fdbb3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wF3AjZvRe5N5ZSnFFwhuFNyFNI92ZJrUZCK0v96REQTB1V3c7xwOHyHnCFcI0FwnRGiwAIRC1AILcUBmWDW8YLV4OyQzEKwsQMDbMTlJ6R0AOIN2RlaLtQqJpp3X6xh8t1dDFzwNjuqQt7011Ns8PhLN3thIbW_1EDutepqGbpP7if_sFI1hmdNAlVHbofu01OX9fjfW-CGG_pQcOdUne_Zz5-T17vZl8VA8Pd8_Lm6eCs1LMRTaoW2cVg55xU0rrClZ7SqFvK6sYLaqS1g22BrFhTDQQG2YEy3jrGydWS75nFxOvdsYPrJNg9x0Sdu-V96GnCTWDbKqxQpH9OIP-h5y9OM6yVglylrAOGJOcKJ0DClF6-Q2dhsVdxJBfquXk3o5qpff6qUYM2zKpJH1Kxt_m_8PfQEHi4iV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259469035</pqid></control><display><type>article</type><title>Chaos synchronization of coupled neurons under electrical stimulation via robust adaptive fuzzy control</title><source>Springer Nature</source><creator>Che, Yan-Qiu ; Wang, Jiang ; Chan, Wai-Lok ; Tsang, Kai-Ming</creator><creatorcontrib>Che, Yan-Qiu ; Wang, Jiang ; Chan, Wai-Lok ; Tsang, Kai-Ming</creatorcontrib><description>This paper presents a robust adaptive fuzzy controller to synchronize two gap junction coupled chaotic FitzHugh–Nagumo (FHN) neurons under external electrical stimulation. A variable universe adaptive fuzzy approximator is used to approximate the nonlinear uncertain function of the synchronization error system. Based on the Lyapunov stability theory, the obtained adaptive laws of fuzzy algorithm not only guarantee the stability of the closed loop error system, but also attenuate the influence of matching error and external disturbance on synchronization error to an arbitrarily desired level. Chaos synchronization is obtained by proper choice of the control parameters. The simulation results demonstrate the effectiveness of the proposed control method.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-010-9691-9</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Adaptive algorithms ; Adaptive control ; Adaptive systems ; Automotive Engineering ; Chaos theory ; Classical Mechanics ; Closed loops ; Computer simulation ; Control ; Dynamical Systems ; Engineering ; Errors ; Fuzzy ; Fuzzy control ; Mechanical Engineering ; Neurons ; Nonlinear dynamics ; Original Paper ; Robust control ; Robustness (mathematics) ; Stability ; Stimulation ; Synchronism ; Synchronization ; Universe ; Vibration</subject><ispartof>Nonlinear dynamics, 2010-09, Vol.61 (4), p.847-857</ispartof><rights>Springer Science+Business Media B.V. 2010</rights><rights>Nonlinear Dynamics is a copyright of Springer, (2010). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-cf1e7fcaf1353d89ed426f5a1365e92e5640b718da399d0706d2f9823248fdbb3</citedby><cites>FETCH-LOGICAL-c349t-cf1e7fcaf1353d89ed426f5a1365e92e5640b718da399d0706d2f9823248fdbb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Che, Yan-Qiu</creatorcontrib><creatorcontrib>Wang, Jiang</creatorcontrib><creatorcontrib>Chan, Wai-Lok</creatorcontrib><creatorcontrib>Tsang, Kai-Ming</creatorcontrib><title>Chaos synchronization of coupled neurons under electrical stimulation via robust adaptive fuzzy control</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>This paper presents a robust adaptive fuzzy controller to synchronize two gap junction coupled chaotic FitzHugh–Nagumo (FHN) neurons under external electrical stimulation. A variable universe adaptive fuzzy approximator is used to approximate the nonlinear uncertain function of the synchronization error system. Based on the Lyapunov stability theory, the obtained adaptive laws of fuzzy algorithm not only guarantee the stability of the closed loop error system, but also attenuate the influence of matching error and external disturbance on synchronization error to an arbitrarily desired level. Chaos synchronization is obtained by proper choice of the control parameters. The simulation results demonstrate the effectiveness of the proposed control method.</description><subject>Adaptive algorithms</subject><subject>Adaptive control</subject><subject>Adaptive systems</subject><subject>Automotive Engineering</subject><subject>Chaos theory</subject><subject>Classical Mechanics</subject><subject>Closed loops</subject><subject>Computer simulation</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Errors</subject><subject>Fuzzy</subject><subject>Fuzzy control</subject><subject>Mechanical Engineering</subject><subject>Neurons</subject><subject>Nonlinear dynamics</subject><subject>Original Paper</subject><subject>Robust control</subject><subject>Robustness (mathematics)</subject><subject>Stability</subject><subject>Stimulation</subject><subject>Synchronism</subject><subject>Synchronization</subject><subject>Universe</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKs_wF3AjZvRe5N5ZSnFFwhuFNyFNI92ZJrUZCK0v96REQTB1V3c7xwOHyHnCFcI0FwnRGiwAIRC1AILcUBmWDW8YLV4OyQzEKwsQMDbMTlJ6R0AOIN2RlaLtQqJpp3X6xh8t1dDFzwNjuqQt7011Ns8PhLN3thIbW_1EDutepqGbpP7if_sFI1hmdNAlVHbofu01OX9fjfW-CGG_pQcOdUne_Zz5-T17vZl8VA8Pd8_Lm6eCs1LMRTaoW2cVg55xU0rrClZ7SqFvK6sYLaqS1g22BrFhTDQQG2YEy3jrGydWS75nFxOvdsYPrJNg9x0Sdu-V96GnCTWDbKqxQpH9OIP-h5y9OM6yVglylrAOGJOcKJ0DClF6-Q2dhsVdxJBfquXk3o5qpff6qUYM2zKpJH1Kxt_m_8PfQEHi4iV</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Che, Yan-Qiu</creator><creator>Wang, Jiang</creator><creator>Chan, Wai-Lok</creator><creator>Tsang, Kai-Ming</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100901</creationdate><title>Chaos synchronization of coupled neurons under electrical stimulation via robust adaptive fuzzy control</title><author>Che, Yan-Qiu ; Wang, Jiang ; Chan, Wai-Lok ; Tsang, Kai-Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-cf1e7fcaf1353d89ed426f5a1365e92e5640b718da399d0706d2f9823248fdbb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adaptive algorithms</topic><topic>Adaptive control</topic><topic>Adaptive systems</topic><topic>Automotive Engineering</topic><topic>Chaos theory</topic><topic>Classical Mechanics</topic><topic>Closed loops</topic><topic>Computer simulation</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Errors</topic><topic>Fuzzy</topic><topic>Fuzzy control</topic><topic>Mechanical Engineering</topic><topic>Neurons</topic><topic>Nonlinear dynamics</topic><topic>Original Paper</topic><topic>Robust control</topic><topic>Robustness (mathematics)</topic><topic>Stability</topic><topic>Stimulation</topic><topic>Synchronism</topic><topic>Synchronization</topic><topic>Universe</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Che, Yan-Qiu</creatorcontrib><creatorcontrib>Wang, Jiang</creatorcontrib><creatorcontrib>Chan, Wai-Lok</creatorcontrib><creatorcontrib>Tsang, Kai-Ming</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Che, Yan-Qiu</au><au>Wang, Jiang</au><au>Chan, Wai-Lok</au><au>Tsang, Kai-Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chaos synchronization of coupled neurons under electrical stimulation via robust adaptive fuzzy control</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2010-09-01</date><risdate>2010</risdate><volume>61</volume><issue>4</issue><spage>847</spage><epage>857</epage><pages>847-857</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>This paper presents a robust adaptive fuzzy controller to synchronize two gap junction coupled chaotic FitzHugh–Nagumo (FHN) neurons under external electrical stimulation. A variable universe adaptive fuzzy approximator is used to approximate the nonlinear uncertain function of the synchronization error system. Based on the Lyapunov stability theory, the obtained adaptive laws of fuzzy algorithm not only guarantee the stability of the closed loop error system, but also attenuate the influence of matching error and external disturbance on synchronization error to an arbitrarily desired level. Chaos synchronization is obtained by proper choice of the control parameters. The simulation results demonstrate the effectiveness of the proposed control method.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-010-9691-9</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2010-09, Vol.61 (4), p.847-857
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_miscellaneous_1671258151
source Springer Nature
subjects Adaptive algorithms
Adaptive control
Adaptive systems
Automotive Engineering
Chaos theory
Classical Mechanics
Closed loops
Computer simulation
Control
Dynamical Systems
Engineering
Errors
Fuzzy
Fuzzy control
Mechanical Engineering
Neurons
Nonlinear dynamics
Original Paper
Robust control
Robustness (mathematics)
Stability
Stimulation
Synchronism
Synchronization
Universe
Vibration
title Chaos synchronization of coupled neurons under electrical stimulation via robust adaptive fuzzy control
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A04%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chaos%20synchronization%20of%20coupled%20neurons%20under%20electrical%20stimulation%20via%20robust%20adaptive%20fuzzy%20control&rft.jtitle=Nonlinear%20dynamics&rft.au=Che,%20Yan-Qiu&rft.date=2010-09-01&rft.volume=61&rft.issue=4&rft.spage=847&rft.epage=857&rft.pages=847-857&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-010-9691-9&rft_dat=%3Cproquest_cross%3E2259469035%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-cf1e7fcaf1353d89ed426f5a1365e92e5640b718da399d0706d2f9823248fdbb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2259469035&rft_id=info:pmid/&rfr_iscdi=true