Loading…
Chaos synchronization of coupled neurons under electrical stimulation via robust adaptive fuzzy control
This paper presents a robust adaptive fuzzy controller to synchronize two gap junction coupled chaotic FitzHugh–Nagumo (FHN) neurons under external electrical stimulation. A variable universe adaptive fuzzy approximator is used to approximate the nonlinear uncertain function of the synchronization e...
Saved in:
Published in: | Nonlinear dynamics 2010-09, Vol.61 (4), p.847-857 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c349t-cf1e7fcaf1353d89ed426f5a1365e92e5640b718da399d0706d2f9823248fdbb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c349t-cf1e7fcaf1353d89ed426f5a1365e92e5640b718da399d0706d2f9823248fdbb3 |
container_end_page | 857 |
container_issue | 4 |
container_start_page | 847 |
container_title | Nonlinear dynamics |
container_volume | 61 |
creator | Che, Yan-Qiu Wang, Jiang Chan, Wai-Lok Tsang, Kai-Ming |
description | This paper presents a robust adaptive fuzzy controller to synchronize two gap junction coupled chaotic FitzHugh–Nagumo (FHN) neurons under external electrical stimulation. A variable universe adaptive fuzzy approximator is used to approximate the nonlinear uncertain function of the synchronization error system. Based on the Lyapunov stability theory, the obtained adaptive laws of fuzzy algorithm not only guarantee the stability of the closed loop error system, but also attenuate the influence of matching error and external disturbance on synchronization error to an arbitrarily desired level. Chaos synchronization is obtained by proper choice of the control parameters. The simulation results demonstrate the effectiveness of the proposed control method. |
doi_str_mv | 10.1007/s11071-010-9691-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671258151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259469035</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-cf1e7fcaf1353d89ed426f5a1365e92e5640b718da399d0706d2f9823248fdbb3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wF3AjZvRe5N5ZSnFFwhuFNyFNI92ZJrUZCK0v96REQTB1V3c7xwOHyHnCFcI0FwnRGiwAIRC1AILcUBmWDW8YLV4OyQzEKwsQMDbMTlJ6R0AOIN2RlaLtQqJpp3X6xh8t1dDFzwNjuqQt7011Ns8PhLN3thIbW_1EDutepqGbpP7if_sFI1hmdNAlVHbofu01OX9fjfW-CGG_pQcOdUne_Zz5-T17vZl8VA8Pd8_Lm6eCs1LMRTaoW2cVg55xU0rrClZ7SqFvK6sYLaqS1g22BrFhTDQQG2YEy3jrGydWS75nFxOvdsYPrJNg9x0Sdu-V96GnCTWDbKqxQpH9OIP-h5y9OM6yVglylrAOGJOcKJ0DClF6-Q2dhsVdxJBfquXk3o5qpff6qUYM2zKpJH1Kxt_m_8PfQEHi4iV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259469035</pqid></control><display><type>article</type><title>Chaos synchronization of coupled neurons under electrical stimulation via robust adaptive fuzzy control</title><source>Springer Nature</source><creator>Che, Yan-Qiu ; Wang, Jiang ; Chan, Wai-Lok ; Tsang, Kai-Ming</creator><creatorcontrib>Che, Yan-Qiu ; Wang, Jiang ; Chan, Wai-Lok ; Tsang, Kai-Ming</creatorcontrib><description>This paper presents a robust adaptive fuzzy controller to synchronize two gap junction coupled chaotic FitzHugh–Nagumo (FHN) neurons under external electrical stimulation. A variable universe adaptive fuzzy approximator is used to approximate the nonlinear uncertain function of the synchronization error system. Based on the Lyapunov stability theory, the obtained adaptive laws of fuzzy algorithm not only guarantee the stability of the closed loop error system, but also attenuate the influence of matching error and external disturbance on synchronization error to an arbitrarily desired level. Chaos synchronization is obtained by proper choice of the control parameters. The simulation results demonstrate the effectiveness of the proposed control method.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-010-9691-9</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Adaptive algorithms ; Adaptive control ; Adaptive systems ; Automotive Engineering ; Chaos theory ; Classical Mechanics ; Closed loops ; Computer simulation ; Control ; Dynamical Systems ; Engineering ; Errors ; Fuzzy ; Fuzzy control ; Mechanical Engineering ; Neurons ; Nonlinear dynamics ; Original Paper ; Robust control ; Robustness (mathematics) ; Stability ; Stimulation ; Synchronism ; Synchronization ; Universe ; Vibration</subject><ispartof>Nonlinear dynamics, 2010-09, Vol.61 (4), p.847-857</ispartof><rights>Springer Science+Business Media B.V. 2010</rights><rights>Nonlinear Dynamics is a copyright of Springer, (2010). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-cf1e7fcaf1353d89ed426f5a1365e92e5640b718da399d0706d2f9823248fdbb3</citedby><cites>FETCH-LOGICAL-c349t-cf1e7fcaf1353d89ed426f5a1365e92e5640b718da399d0706d2f9823248fdbb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Che, Yan-Qiu</creatorcontrib><creatorcontrib>Wang, Jiang</creatorcontrib><creatorcontrib>Chan, Wai-Lok</creatorcontrib><creatorcontrib>Tsang, Kai-Ming</creatorcontrib><title>Chaos synchronization of coupled neurons under electrical stimulation via robust adaptive fuzzy control</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>This paper presents a robust adaptive fuzzy controller to synchronize two gap junction coupled chaotic FitzHugh–Nagumo (FHN) neurons under external electrical stimulation. A variable universe adaptive fuzzy approximator is used to approximate the nonlinear uncertain function of the synchronization error system. Based on the Lyapunov stability theory, the obtained adaptive laws of fuzzy algorithm not only guarantee the stability of the closed loop error system, but also attenuate the influence of matching error and external disturbance on synchronization error to an arbitrarily desired level. Chaos synchronization is obtained by proper choice of the control parameters. The simulation results demonstrate the effectiveness of the proposed control method.</description><subject>Adaptive algorithms</subject><subject>Adaptive control</subject><subject>Adaptive systems</subject><subject>Automotive Engineering</subject><subject>Chaos theory</subject><subject>Classical Mechanics</subject><subject>Closed loops</subject><subject>Computer simulation</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Errors</subject><subject>Fuzzy</subject><subject>Fuzzy control</subject><subject>Mechanical Engineering</subject><subject>Neurons</subject><subject>Nonlinear dynamics</subject><subject>Original Paper</subject><subject>Robust control</subject><subject>Robustness (mathematics)</subject><subject>Stability</subject><subject>Stimulation</subject><subject>Synchronism</subject><subject>Synchronization</subject><subject>Universe</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKs_wF3AjZvRe5N5ZSnFFwhuFNyFNI92ZJrUZCK0v96REQTB1V3c7xwOHyHnCFcI0FwnRGiwAIRC1AILcUBmWDW8YLV4OyQzEKwsQMDbMTlJ6R0AOIN2RlaLtQqJpp3X6xh8t1dDFzwNjuqQt7011Ns8PhLN3thIbW_1EDutepqGbpP7if_sFI1hmdNAlVHbofu01OX9fjfW-CGG_pQcOdUne_Zz5-T17vZl8VA8Pd8_Lm6eCs1LMRTaoW2cVg55xU0rrClZ7SqFvK6sYLaqS1g22BrFhTDQQG2YEy3jrGydWS75nFxOvdsYPrJNg9x0Sdu-V96GnCTWDbKqxQpH9OIP-h5y9OM6yVglylrAOGJOcKJ0DClF6-Q2dhsVdxJBfquXk3o5qpff6qUYM2zKpJH1Kxt_m_8PfQEHi4iV</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Che, Yan-Qiu</creator><creator>Wang, Jiang</creator><creator>Chan, Wai-Lok</creator><creator>Tsang, Kai-Ming</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100901</creationdate><title>Chaos synchronization of coupled neurons under electrical stimulation via robust adaptive fuzzy control</title><author>Che, Yan-Qiu ; Wang, Jiang ; Chan, Wai-Lok ; Tsang, Kai-Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-cf1e7fcaf1353d89ed426f5a1365e92e5640b718da399d0706d2f9823248fdbb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adaptive algorithms</topic><topic>Adaptive control</topic><topic>Adaptive systems</topic><topic>Automotive Engineering</topic><topic>Chaos theory</topic><topic>Classical Mechanics</topic><topic>Closed loops</topic><topic>Computer simulation</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Errors</topic><topic>Fuzzy</topic><topic>Fuzzy control</topic><topic>Mechanical Engineering</topic><topic>Neurons</topic><topic>Nonlinear dynamics</topic><topic>Original Paper</topic><topic>Robust control</topic><topic>Robustness (mathematics)</topic><topic>Stability</topic><topic>Stimulation</topic><topic>Synchronism</topic><topic>Synchronization</topic><topic>Universe</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Che, Yan-Qiu</creatorcontrib><creatorcontrib>Wang, Jiang</creatorcontrib><creatorcontrib>Chan, Wai-Lok</creatorcontrib><creatorcontrib>Tsang, Kai-Ming</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Che, Yan-Qiu</au><au>Wang, Jiang</au><au>Chan, Wai-Lok</au><au>Tsang, Kai-Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chaos synchronization of coupled neurons under electrical stimulation via robust adaptive fuzzy control</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2010-09-01</date><risdate>2010</risdate><volume>61</volume><issue>4</issue><spage>847</spage><epage>857</epage><pages>847-857</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>This paper presents a robust adaptive fuzzy controller to synchronize two gap junction coupled chaotic FitzHugh–Nagumo (FHN) neurons under external electrical stimulation. A variable universe adaptive fuzzy approximator is used to approximate the nonlinear uncertain function of the synchronization error system. Based on the Lyapunov stability theory, the obtained adaptive laws of fuzzy algorithm not only guarantee the stability of the closed loop error system, but also attenuate the influence of matching error and external disturbance on synchronization error to an arbitrarily desired level. Chaos synchronization is obtained by proper choice of the control parameters. The simulation results demonstrate the effectiveness of the proposed control method.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-010-9691-9</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2010-09, Vol.61 (4), p.847-857 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_proquest_miscellaneous_1671258151 |
source | Springer Nature |
subjects | Adaptive algorithms Adaptive control Adaptive systems Automotive Engineering Chaos theory Classical Mechanics Closed loops Computer simulation Control Dynamical Systems Engineering Errors Fuzzy Fuzzy control Mechanical Engineering Neurons Nonlinear dynamics Original Paper Robust control Robustness (mathematics) Stability Stimulation Synchronism Synchronization Universe Vibration |
title | Chaos synchronization of coupled neurons under electrical stimulation via robust adaptive fuzzy control |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A04%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chaos%20synchronization%20of%20coupled%20neurons%20under%20electrical%20stimulation%20via%20robust%20adaptive%20fuzzy%20control&rft.jtitle=Nonlinear%20dynamics&rft.au=Che,%20Yan-Qiu&rft.date=2010-09-01&rft.volume=61&rft.issue=4&rft.spage=847&rft.epage=857&rft.pages=847-857&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-010-9691-9&rft_dat=%3Cproquest_cross%3E2259469035%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-cf1e7fcaf1353d89ed426f5a1365e92e5640b718da399d0706d2f9823248fdbb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2259469035&rft_id=info:pmid/&rfr_iscdi=true |