Loading…

Superconductive Traveling-Wave Photodetectors: Fundamentals and Optical Propagation

This paper studies the theory of superconductive traveling-wave photodector devices (STWPDs), as a general platform for ultrafast, ultrasensitive, and ultralow-noise optoelectronic functions such as detection, modulation, photomixing, high-frequency electrical signal generation and amplification. Pr...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of quantum electronics 2008-07, Vol.44 (7), p.667-675
Main Authors: Ghamsari, B.G., Majedi, A.H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper studies the theory of superconductive traveling-wave photodector devices (STWPDs), as a general platform for ultrafast, ultrasensitive, and ultralow-noise optoelectronic functions such as detection, modulation, photomixing, high-frequency electrical signal generation and amplification. Principles of operation of STWPDs are discussed based on the kinetic-inductance theory of superconductive thin films and a thorough investigation of the guiding mechanism of light within this class of devices is presented. The transfer matrix method is introduced to model the superconductive optical waveguide in TWDs and an efficient numerical method based on the Cauchy integral method and the argument principle method are developed for the analysis and design of the waveguides. Moreover, several regimes of device operation will be distinguished in terms of the modal characteristics of the optical waveguide and their effects on the overall performance of the device will be highlighted.
ISSN:0018-9197
1558-1713
DOI:10.1109/JQE.2008.922409