Loading…
Superconductive Traveling-Wave Photodetectors: Fundamentals and Optical Propagation
This paper studies the theory of superconductive traveling-wave photodector devices (STWPDs), as a general platform for ultrafast, ultrasensitive, and ultralow-noise optoelectronic functions such as detection, modulation, photomixing, high-frequency electrical signal generation and amplification. Pr...
Saved in:
Published in: | IEEE journal of quantum electronics 2008-07, Vol.44 (7), p.667-675 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper studies the theory of superconductive traveling-wave photodector devices (STWPDs), as a general platform for ultrafast, ultrasensitive, and ultralow-noise optoelectronic functions such as detection, modulation, photomixing, high-frequency electrical signal generation and amplification. Principles of operation of STWPDs are discussed based on the kinetic-inductance theory of superconductive thin films and a thorough investigation of the guiding mechanism of light within this class of devices is presented. The transfer matrix method is introduced to model the superconductive optical waveguide in TWDs and an efficient numerical method based on the Cauchy integral method and the argument principle method are developed for the analysis and design of the waveguides. Moreover, several regimes of device operation will be distinguished in terms of the modal characteristics of the optical waveguide and their effects on the overall performance of the device will be highlighted. |
---|---|
ISSN: | 0018-9197 1558-1713 |
DOI: | 10.1109/JQE.2008.922409 |