Loading…
Superconductive Traveling-Wave Photodetectors: Fundamentals and Optical Propagation
This paper studies the theory of superconductive traveling-wave photodector devices (STWPDs), as a general platform for ultrafast, ultrasensitive, and ultralow-noise optoelectronic functions such as detection, modulation, photomixing, high-frequency electrical signal generation and amplification. Pr...
Saved in:
Published in: | IEEE journal of quantum electronics 2008-07, Vol.44 (7), p.667-675 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c351t-b9d6b244d9a3688ce05a2c3864d188af6876b9abafc81798d1f1fd84484079d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c351t-b9d6b244d9a3688ce05a2c3864d188af6876b9abafc81798d1f1fd84484079d3 |
container_end_page | 675 |
container_issue | 7 |
container_start_page | 667 |
container_title | IEEE journal of quantum electronics |
container_volume | 44 |
creator | Ghamsari, B.G. Majedi, A.H. |
description | This paper studies the theory of superconductive traveling-wave photodector devices (STWPDs), as a general platform for ultrafast, ultrasensitive, and ultralow-noise optoelectronic functions such as detection, modulation, photomixing, high-frequency electrical signal generation and amplification. Principles of operation of STWPDs are discussed based on the kinetic-inductance theory of superconductive thin films and a thorough investigation of the guiding mechanism of light within this class of devices is presented. The transfer matrix method is introduced to model the superconductive optical waveguide in TWDs and an efficient numerical method based on the Cauchy integral method and the argument principle method are developed for the analysis and design of the waveguides. Moreover, several regimes of device operation will be distinguished in terms of the modal characteristics of the optical waveguide and their effects on the overall performance of the device will be highlighted. |
doi_str_mv | 10.1109/JQE.2008.922409 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671259965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4511491</ieee_id><sourcerecordid>2322174991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-b9d6b244d9a3688ce05a2c3864d188af6876b9abafc81798d1f1fd84484079d3</originalsourceid><addsrcrecordid>eNpdkE1LxDAQhoMouK6ePXgpguClayZN08SbiJ8srOKCx5BNUq10k5qkgv_eLCsePM0M88zL8CB0DHgGgMXF4_PNjGDMZ4IQisUOmkBd8xIaqHbRBGPgpQDR7KODGD_ySCnHE_TyMg42aO_MqFP3ZYtlUF-279xb-Zqb4undJ29ssjr5EC-L29EZtbYuqT4WypliMaROq754Cn5Qbyp13h2ivTav7dFvnaLl7c3y-r6cL-4erq_mpa5qSOVKGLYilBqhKsa5trhWRFecUQOcq5bxhq2EWqlWc2gEN9BCa3j-m-JGmGqKzrexQ_Cfo41Jrruobd8rZ_0YJbAGSC0EqzN6-g_98GNw-TnJGSGAs8AMXWwhHXyMwbZyCN1ahW8JWG4Uy6xYbhTLreJ8cfYbq2J20AbldBf_zgiuWY6uMney5Tpr7d-a1gBUQPUDguWEUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862210109</pqid></control><display><type>article</type><title>Superconductive Traveling-Wave Photodetectors: Fundamentals and Optical Propagation</title><source>IEEE Xplore (Online service)</source><creator>Ghamsari, B.G. ; Majedi, A.H.</creator><creatorcontrib>Ghamsari, B.G. ; Majedi, A.H.</creatorcontrib><description>This paper studies the theory of superconductive traveling-wave photodector devices (STWPDs), as a general platform for ultrafast, ultrasensitive, and ultralow-noise optoelectronic functions such as detection, modulation, photomixing, high-frequency electrical signal generation and amplification. Principles of operation of STWPDs are discussed based on the kinetic-inductance theory of superconductive thin films and a thorough investigation of the guiding mechanism of light within this class of devices is presented. The transfer matrix method is introduced to model the superconductive optical waveguide in TWDs and an efficient numerical method based on the Cauchy integral method and the argument principle method are developed for the analysis and design of the waveguides. Moreover, several regimes of device operation will be distinguished in terms of the modal characteristics of the optical waveguide and their effects on the overall performance of the device will be highlighted.</description><identifier>ISSN: 0018-9197</identifier><identifier>EISSN: 1558-1713</identifier><identifier>DOI: 10.1109/JQE.2008.922409</identifier><identifier>CODEN: IEJQA7</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Cauchy integral method ; Devices ; Electronics ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Mathematical analysis ; Mathematical models ; Modulation ; Optical elements, devices, and systems ; Optical films ; Optical propagation ; Optical waveguides ; Optical waveguides and coupleurs ; Optics ; Optoelectronic devices ; Photodetectors ; Physics ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Signal generation ; Signal generators ; Superconducting thin films ; superconductive optical waveguides ; Superconductive photodetectors ; Superconductivity ; Superconductors ; Thin film devices ; Thin films ; Transmission line matrix methods ; traveling-wave optoelectronic devices ; Ultrafast optics</subject><ispartof>IEEE journal of quantum electronics, 2008-07, Vol.44 (7), p.667-675</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-b9d6b244d9a3688ce05a2c3864d188af6876b9abafc81798d1f1fd84484079d3</citedby><cites>FETCH-LOGICAL-c351t-b9d6b244d9a3688ce05a2c3864d188af6876b9abafc81798d1f1fd84484079d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4511491$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20561013$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ghamsari, B.G.</creatorcontrib><creatorcontrib>Majedi, A.H.</creatorcontrib><title>Superconductive Traveling-Wave Photodetectors: Fundamentals and Optical Propagation</title><title>IEEE journal of quantum electronics</title><addtitle>JQE</addtitle><description>This paper studies the theory of superconductive traveling-wave photodector devices (STWPDs), as a general platform for ultrafast, ultrasensitive, and ultralow-noise optoelectronic functions such as detection, modulation, photomixing, high-frequency electrical signal generation and amplification. Principles of operation of STWPDs are discussed based on the kinetic-inductance theory of superconductive thin films and a thorough investigation of the guiding mechanism of light within this class of devices is presented. The transfer matrix method is introduced to model the superconductive optical waveguide in TWDs and an efficient numerical method based on the Cauchy integral method and the argument principle method are developed for the analysis and design of the waveguides. Moreover, several regimes of device operation will be distinguished in terms of the modal characteristics of the optical waveguide and their effects on the overall performance of the device will be highlighted.</description><subject>Applied sciences</subject><subject>Cauchy integral method</subject><subject>Devices</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Modulation</subject><subject>Optical elements, devices, and systems</subject><subject>Optical films</subject><subject>Optical propagation</subject><subject>Optical waveguides</subject><subject>Optical waveguides and coupleurs</subject><subject>Optics</subject><subject>Optoelectronic devices</subject><subject>Photodetectors</subject><subject>Physics</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Signal generation</subject><subject>Signal generators</subject><subject>Superconducting thin films</subject><subject>superconductive optical waveguides</subject><subject>Superconductive photodetectors</subject><subject>Superconductivity</subject><subject>Superconductors</subject><subject>Thin film devices</subject><subject>Thin films</subject><subject>Transmission line matrix methods</subject><subject>traveling-wave optoelectronic devices</subject><subject>Ultrafast optics</subject><issn>0018-9197</issn><issn>1558-1713</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LxDAQhoMouK6ePXgpguClayZN08SbiJ8srOKCx5BNUq10k5qkgv_eLCsePM0M88zL8CB0DHgGgMXF4_PNjGDMZ4IQisUOmkBd8xIaqHbRBGPgpQDR7KODGD_ySCnHE_TyMg42aO_MqFP3ZYtlUF-279xb-Zqb4undJ29ssjr5EC-L29EZtbYuqT4WypliMaROq754Cn5Qbyp13h2ivTav7dFvnaLl7c3y-r6cL-4erq_mpa5qSOVKGLYilBqhKsa5trhWRFecUQOcq5bxhq2EWqlWc2gEN9BCa3j-m-JGmGqKzrexQ_Cfo41Jrruobd8rZ_0YJbAGSC0EqzN6-g_98GNw-TnJGSGAs8AMXWwhHXyMwbZyCN1ahW8JWG4Uy6xYbhTLreJ8cfYbq2J20AbldBf_zgiuWY6uMney5Tpr7d-a1gBUQPUDguWEUg</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>Ghamsari, B.G.</creator><creator>Majedi, A.H.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20080701</creationdate><title>Superconductive Traveling-Wave Photodetectors: Fundamentals and Optical Propagation</title><author>Ghamsari, B.G. ; Majedi, A.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-b9d6b244d9a3688ce05a2c3864d188af6876b9abafc81798d1f1fd84484079d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Cauchy integral method</topic><topic>Devices</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Modulation</topic><topic>Optical elements, devices, and systems</topic><topic>Optical films</topic><topic>Optical propagation</topic><topic>Optical waveguides</topic><topic>Optical waveguides and coupleurs</topic><topic>Optics</topic><topic>Optoelectronic devices</topic><topic>Photodetectors</topic><topic>Physics</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Signal generation</topic><topic>Signal generators</topic><topic>Superconducting thin films</topic><topic>superconductive optical waveguides</topic><topic>Superconductive photodetectors</topic><topic>Superconductivity</topic><topic>Superconductors</topic><topic>Thin film devices</topic><topic>Thin films</topic><topic>Transmission line matrix methods</topic><topic>traveling-wave optoelectronic devices</topic><topic>Ultrafast optics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghamsari, B.G.</creatorcontrib><creatorcontrib>Majedi, A.H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE journal of quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghamsari, B.G.</au><au>Majedi, A.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superconductive Traveling-Wave Photodetectors: Fundamentals and Optical Propagation</atitle><jtitle>IEEE journal of quantum electronics</jtitle><stitle>JQE</stitle><date>2008-07-01</date><risdate>2008</risdate><volume>44</volume><issue>7</issue><spage>667</spage><epage>675</epage><pages>667-675</pages><issn>0018-9197</issn><eissn>1558-1713</eissn><coden>IEJQA7</coden><abstract>This paper studies the theory of superconductive traveling-wave photodector devices (STWPDs), as a general platform for ultrafast, ultrasensitive, and ultralow-noise optoelectronic functions such as detection, modulation, photomixing, high-frequency electrical signal generation and amplification. Principles of operation of STWPDs are discussed based on the kinetic-inductance theory of superconductive thin films and a thorough investigation of the guiding mechanism of light within this class of devices is presented. The transfer matrix method is introduced to model the superconductive optical waveguide in TWDs and an efficient numerical method based on the Cauchy integral method and the argument principle method are developed for the analysis and design of the waveguides. Moreover, several regimes of device operation will be distinguished in terms of the modal characteristics of the optical waveguide and their effects on the overall performance of the device will be highlighted.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/JQE.2008.922409</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9197 |
ispartof | IEEE journal of quantum electronics, 2008-07, Vol.44 (7), p.667-675 |
issn | 0018-9197 1558-1713 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671259965 |
source | IEEE Xplore (Online service) |
subjects | Applied sciences Cauchy integral method Devices Electronics Exact sciences and technology Fundamental areas of phenomenology (including applications) Mathematical analysis Mathematical models Modulation Optical elements, devices, and systems Optical films Optical propagation Optical waveguides Optical waveguides and coupleurs Optics Optoelectronic devices Photodetectors Physics Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Signal generation Signal generators Superconducting thin films superconductive optical waveguides Superconductive photodetectors Superconductivity Superconductors Thin film devices Thin films Transmission line matrix methods traveling-wave optoelectronic devices Ultrafast optics |
title | Superconductive Traveling-Wave Photodetectors: Fundamentals and Optical Propagation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A26%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superconductive%20Traveling-Wave%20Photodetectors:%20Fundamentals%20and%20Optical%20Propagation&rft.jtitle=IEEE%20journal%20of%20quantum%20electronics&rft.au=Ghamsari,%20B.G.&rft.date=2008-07-01&rft.volume=44&rft.issue=7&rft.spage=667&rft.epage=675&rft.pages=667-675&rft.issn=0018-9197&rft.eissn=1558-1713&rft.coden=IEJQA7&rft_id=info:doi/10.1109/JQE.2008.922409&rft_dat=%3Cproquest_ieee_%3E2322174991%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c351t-b9d6b244d9a3688ce05a2c3864d188af6876b9abafc81798d1f1fd84484079d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=862210109&rft_id=info:pmid/&rft_ieee_id=4511491&rfr_iscdi=true |