Loading…

Superconductive Traveling-Wave Photodetectors: Fundamentals and Optical Propagation

This paper studies the theory of superconductive traveling-wave photodector devices (STWPDs), as a general platform for ultrafast, ultrasensitive, and ultralow-noise optoelectronic functions such as detection, modulation, photomixing, high-frequency electrical signal generation and amplification. Pr...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of quantum electronics 2008-07, Vol.44 (7), p.667-675
Main Authors: Ghamsari, B.G., Majedi, A.H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c351t-b9d6b244d9a3688ce05a2c3864d188af6876b9abafc81798d1f1fd84484079d3
cites cdi_FETCH-LOGICAL-c351t-b9d6b244d9a3688ce05a2c3864d188af6876b9abafc81798d1f1fd84484079d3
container_end_page 675
container_issue 7
container_start_page 667
container_title IEEE journal of quantum electronics
container_volume 44
creator Ghamsari, B.G.
Majedi, A.H.
description This paper studies the theory of superconductive traveling-wave photodector devices (STWPDs), as a general platform for ultrafast, ultrasensitive, and ultralow-noise optoelectronic functions such as detection, modulation, photomixing, high-frequency electrical signal generation and amplification. Principles of operation of STWPDs are discussed based on the kinetic-inductance theory of superconductive thin films and a thorough investigation of the guiding mechanism of light within this class of devices is presented. The transfer matrix method is introduced to model the superconductive optical waveguide in TWDs and an efficient numerical method based on the Cauchy integral method and the argument principle method are developed for the analysis and design of the waveguides. Moreover, several regimes of device operation will be distinguished in terms of the modal characteristics of the optical waveguide and their effects on the overall performance of the device will be highlighted.
doi_str_mv 10.1109/JQE.2008.922409
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671259965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4511491</ieee_id><sourcerecordid>2322174991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-b9d6b244d9a3688ce05a2c3864d188af6876b9abafc81798d1f1fd84484079d3</originalsourceid><addsrcrecordid>eNpdkE1LxDAQhoMouK6ePXgpguClayZN08SbiJ8srOKCx5BNUq10k5qkgv_eLCsePM0M88zL8CB0DHgGgMXF4_PNjGDMZ4IQisUOmkBd8xIaqHbRBGPgpQDR7KODGD_ySCnHE_TyMg42aO_MqFP3ZYtlUF-279xb-Zqb4undJ29ssjr5EC-L29EZtbYuqT4WypliMaROq754Cn5Qbyp13h2ivTav7dFvnaLl7c3y-r6cL-4erq_mpa5qSOVKGLYilBqhKsa5trhWRFecUQOcq5bxhq2EWqlWc2gEN9BCa3j-m-JGmGqKzrexQ_Cfo41Jrruobd8rZ_0YJbAGSC0EqzN6-g_98GNw-TnJGSGAs8AMXWwhHXyMwbZyCN1ahW8JWG4Uy6xYbhTLreJ8cfYbq2J20AbldBf_zgiuWY6uMney5Tpr7d-a1gBUQPUDguWEUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862210109</pqid></control><display><type>article</type><title>Superconductive Traveling-Wave Photodetectors: Fundamentals and Optical Propagation</title><source>IEEE Xplore (Online service)</source><creator>Ghamsari, B.G. ; Majedi, A.H.</creator><creatorcontrib>Ghamsari, B.G. ; Majedi, A.H.</creatorcontrib><description>This paper studies the theory of superconductive traveling-wave photodector devices (STWPDs), as a general platform for ultrafast, ultrasensitive, and ultralow-noise optoelectronic functions such as detection, modulation, photomixing, high-frequency electrical signal generation and amplification. Principles of operation of STWPDs are discussed based on the kinetic-inductance theory of superconductive thin films and a thorough investigation of the guiding mechanism of light within this class of devices is presented. The transfer matrix method is introduced to model the superconductive optical waveguide in TWDs and an efficient numerical method based on the Cauchy integral method and the argument principle method are developed for the analysis and design of the waveguides. Moreover, several regimes of device operation will be distinguished in terms of the modal characteristics of the optical waveguide and their effects on the overall performance of the device will be highlighted.</description><identifier>ISSN: 0018-9197</identifier><identifier>EISSN: 1558-1713</identifier><identifier>DOI: 10.1109/JQE.2008.922409</identifier><identifier>CODEN: IEJQA7</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Cauchy integral method ; Devices ; Electronics ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Mathematical analysis ; Mathematical models ; Modulation ; Optical elements, devices, and systems ; Optical films ; Optical propagation ; Optical waveguides ; Optical waveguides and coupleurs ; Optics ; Optoelectronic devices ; Photodetectors ; Physics ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Signal generation ; Signal generators ; Superconducting thin films ; superconductive optical waveguides ; Superconductive photodetectors ; Superconductivity ; Superconductors ; Thin film devices ; Thin films ; Transmission line matrix methods ; traveling-wave optoelectronic devices ; Ultrafast optics</subject><ispartof>IEEE journal of quantum electronics, 2008-07, Vol.44 (7), p.667-675</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-b9d6b244d9a3688ce05a2c3864d188af6876b9abafc81798d1f1fd84484079d3</citedby><cites>FETCH-LOGICAL-c351t-b9d6b244d9a3688ce05a2c3864d188af6876b9abafc81798d1f1fd84484079d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4511491$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20561013$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ghamsari, B.G.</creatorcontrib><creatorcontrib>Majedi, A.H.</creatorcontrib><title>Superconductive Traveling-Wave Photodetectors: Fundamentals and Optical Propagation</title><title>IEEE journal of quantum electronics</title><addtitle>JQE</addtitle><description>This paper studies the theory of superconductive traveling-wave photodector devices (STWPDs), as a general platform for ultrafast, ultrasensitive, and ultralow-noise optoelectronic functions such as detection, modulation, photomixing, high-frequency electrical signal generation and amplification. Principles of operation of STWPDs are discussed based on the kinetic-inductance theory of superconductive thin films and a thorough investigation of the guiding mechanism of light within this class of devices is presented. The transfer matrix method is introduced to model the superconductive optical waveguide in TWDs and an efficient numerical method based on the Cauchy integral method and the argument principle method are developed for the analysis and design of the waveguides. Moreover, several regimes of device operation will be distinguished in terms of the modal characteristics of the optical waveguide and their effects on the overall performance of the device will be highlighted.</description><subject>Applied sciences</subject><subject>Cauchy integral method</subject><subject>Devices</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Modulation</subject><subject>Optical elements, devices, and systems</subject><subject>Optical films</subject><subject>Optical propagation</subject><subject>Optical waveguides</subject><subject>Optical waveguides and coupleurs</subject><subject>Optics</subject><subject>Optoelectronic devices</subject><subject>Photodetectors</subject><subject>Physics</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Signal generation</subject><subject>Signal generators</subject><subject>Superconducting thin films</subject><subject>superconductive optical waveguides</subject><subject>Superconductive photodetectors</subject><subject>Superconductivity</subject><subject>Superconductors</subject><subject>Thin film devices</subject><subject>Thin films</subject><subject>Transmission line matrix methods</subject><subject>traveling-wave optoelectronic devices</subject><subject>Ultrafast optics</subject><issn>0018-9197</issn><issn>1558-1713</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LxDAQhoMouK6ePXgpguClayZN08SbiJ8srOKCx5BNUq10k5qkgv_eLCsePM0M88zL8CB0DHgGgMXF4_PNjGDMZ4IQisUOmkBd8xIaqHbRBGPgpQDR7KODGD_ySCnHE_TyMg42aO_MqFP3ZYtlUF-279xb-Zqb4undJ29ssjr5EC-L29EZtbYuqT4WypliMaROq754Cn5Qbyp13h2ivTav7dFvnaLl7c3y-r6cL-4erq_mpa5qSOVKGLYilBqhKsa5trhWRFecUQOcq5bxhq2EWqlWc2gEN9BCa3j-m-JGmGqKzrexQ_Cfo41Jrruobd8rZ_0YJbAGSC0EqzN6-g_98GNw-TnJGSGAs8AMXWwhHXyMwbZyCN1ahW8JWG4Uy6xYbhTLreJ8cfYbq2J20AbldBf_zgiuWY6uMney5Tpr7d-a1gBUQPUDguWEUg</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>Ghamsari, B.G.</creator><creator>Majedi, A.H.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20080701</creationdate><title>Superconductive Traveling-Wave Photodetectors: Fundamentals and Optical Propagation</title><author>Ghamsari, B.G. ; Majedi, A.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-b9d6b244d9a3688ce05a2c3864d188af6876b9abafc81798d1f1fd84484079d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Cauchy integral method</topic><topic>Devices</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Modulation</topic><topic>Optical elements, devices, and systems</topic><topic>Optical films</topic><topic>Optical propagation</topic><topic>Optical waveguides</topic><topic>Optical waveguides and coupleurs</topic><topic>Optics</topic><topic>Optoelectronic devices</topic><topic>Photodetectors</topic><topic>Physics</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Signal generation</topic><topic>Signal generators</topic><topic>Superconducting thin films</topic><topic>superconductive optical waveguides</topic><topic>Superconductive photodetectors</topic><topic>Superconductivity</topic><topic>Superconductors</topic><topic>Thin film devices</topic><topic>Thin films</topic><topic>Transmission line matrix methods</topic><topic>traveling-wave optoelectronic devices</topic><topic>Ultrafast optics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghamsari, B.G.</creatorcontrib><creatorcontrib>Majedi, A.H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE journal of quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghamsari, B.G.</au><au>Majedi, A.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superconductive Traveling-Wave Photodetectors: Fundamentals and Optical Propagation</atitle><jtitle>IEEE journal of quantum electronics</jtitle><stitle>JQE</stitle><date>2008-07-01</date><risdate>2008</risdate><volume>44</volume><issue>7</issue><spage>667</spage><epage>675</epage><pages>667-675</pages><issn>0018-9197</issn><eissn>1558-1713</eissn><coden>IEJQA7</coden><abstract>This paper studies the theory of superconductive traveling-wave photodector devices (STWPDs), as a general platform for ultrafast, ultrasensitive, and ultralow-noise optoelectronic functions such as detection, modulation, photomixing, high-frequency electrical signal generation and amplification. Principles of operation of STWPDs are discussed based on the kinetic-inductance theory of superconductive thin films and a thorough investigation of the guiding mechanism of light within this class of devices is presented. The transfer matrix method is introduced to model the superconductive optical waveguide in TWDs and an efficient numerical method based on the Cauchy integral method and the argument principle method are developed for the analysis and design of the waveguides. Moreover, several regimes of device operation will be distinguished in terms of the modal characteristics of the optical waveguide and their effects on the overall performance of the device will be highlighted.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/JQE.2008.922409</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9197
ispartof IEEE journal of quantum electronics, 2008-07, Vol.44 (7), p.667-675
issn 0018-9197
1558-1713
language eng
recordid cdi_proquest_miscellaneous_1671259965
source IEEE Xplore (Online service)
subjects Applied sciences
Cauchy integral method
Devices
Electronics
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Mathematical analysis
Mathematical models
Modulation
Optical elements, devices, and systems
Optical films
Optical propagation
Optical waveguides
Optical waveguides and coupleurs
Optics
Optoelectronic devices
Photodetectors
Physics
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Signal generation
Signal generators
Superconducting thin films
superconductive optical waveguides
Superconductive photodetectors
Superconductivity
Superconductors
Thin film devices
Thin films
Transmission line matrix methods
traveling-wave optoelectronic devices
Ultrafast optics
title Superconductive Traveling-Wave Photodetectors: Fundamentals and Optical Propagation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A26%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superconductive%20Traveling-Wave%20Photodetectors:%20Fundamentals%20and%20Optical%20Propagation&rft.jtitle=IEEE%20journal%20of%20quantum%20electronics&rft.au=Ghamsari,%20B.G.&rft.date=2008-07-01&rft.volume=44&rft.issue=7&rft.spage=667&rft.epage=675&rft.pages=667-675&rft.issn=0018-9197&rft.eissn=1558-1713&rft.coden=IEJQA7&rft_id=info:doi/10.1109/JQE.2008.922409&rft_dat=%3Cproquest_ieee_%3E2322174991%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c351t-b9d6b244d9a3688ce05a2c3864d188af6876b9abafc81798d1f1fd84484079d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=862210109&rft_id=info:pmid/&rft_ieee_id=4511491&rfr_iscdi=true