Loading…
Feedback control of flow resonances using balanced reduced-order models
This paper investigates the use of balanced reduced-order models for the feedback control of flow resonances. Specifically, the Eigensystem Realization Algorithm is used to find balanced reduced-order models of the linear dynamics of such flow resonances. The method is applied first to a computation...
Saved in:
Published in: | Journal of sound and vibration 2011-04, Vol.330 (8), p.1567-1581 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper investigates the use of balanced reduced-order models for the feedback control of flow resonances. Specifically, the Eigensystem Realization Algorithm is used to find balanced reduced-order models of the linear dynamics of such flow resonances. The method is applied first to a computational problem in direct numerical simulations of cavity resonances, and then to a lab-scale experiment of combustion oscillations. Although the resulting reduced-order models both have fewer than 10 degrees of freedom, the feedback controllers that are based on them perform very well, with closed-loop stability achieved over a wide range of operating conditions. |
---|---|
ISSN: | 0022-460X 1095-8568 |
DOI: | 10.1016/j.jsv.2010.10.030 |