Loading…

Differentially Flat Design of Bipeds Ensuring Limit Cycles

For bipedal walking, a set of joint trajectories is acceptable as long as it satisfies certain overall motion requirements, such as: 1) it is repetitive (limit cycles); 2) it allows the foot to clear ground; and 3) it allows the biped to move forward. Since the actual trajectory followed by a biped...

Full description

Saved in:
Bibliographic Details
Published in:IEEE/ASME transactions on mechatronics 2009-12, Vol.14 (6), p.647-657
Main Authors: Sangwan, V., Agrawal, S.K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c327t-8cf84e0861f813829cc09d4ab72867b95814385eb9a2bdbea0ecb556221c7e233
cites cdi_FETCH-LOGICAL-c327t-8cf84e0861f813829cc09d4ab72867b95814385eb9a2bdbea0ecb556221c7e233
container_end_page 657
container_issue 6
container_start_page 647
container_title IEEE/ASME transactions on mechatronics
container_volume 14
creator Sangwan, V.
Agrawal, S.K.
description For bipedal walking, a set of joint trajectories is acceptable as long as it satisfies certain overall motion requirements, such as: 1) it is repetitive (limit cycles); 2) it allows the foot to clear ground; and 3) it allows the biped to move forward. Since the actual trajectory followed by a biped is not as important, a biped having some unactuated joints can also meet these motion requirements. Furthermore, due to physical constraints, a biped cannot have an actuator between the foot and the ground. Hence, it is underactuated during the phase when the foot is rolling on the ground. Besides underactuation, a bipedal robot has nonlinear dynamics and impacts. In general, it is difficult to prove existence of limit cycles for such systems. In this paper, a design methodology that renders planar bipedal robots differentially flat is presented. Differential flatness allows generation of parameterized limit cycles for this class of planar nonlinear underactuated bipeds. Sequential quadratic-programming-based numerical optimization routines are used to optimize these limit cycles while satisfying the motion constraints. The planning and control methodology is illustrated by a two-link biped.
doi_str_mv 10.1109/TMECH.2009.2033593
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671263881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5308456</ieee_id><sourcerecordid>1671263881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-8cf84e0861f813829cc09d4ab72867b95814385eb9a2bdbea0ecb556221c7e233</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0EEqXwB2CJmFhS_BnbbJC2FKmIpUhsluNeKldpUuxkyL8npRUDy90Nz_vq9CB0S_CEEKwfV--zfDGhGOthMCY0O0MjojlJMeFf58ONFUs5Z-ISXcW4xRhzgskIPU19WUKAuvW2qvpkXtk2mUL0mzppyuTF72Edk1kdu-DrTbL0O98mee8qiNfoorRVhJvTHqPP-WyVL9Llx-tb_rxMHaOyTZUrFQesMlIqwhTVzmG95raQVGWy0EIRzpSAQltarAuwGFwhREYpcRIoY2P0cOzdh-a7g9ianY8OqsrW0HTRkEwSmjE1tI_R_T9023ShHr4zSkhOJaVygOgRcqGJMUBp9sHvbOgNweZg0_zaNAeb5mRzCN0dQx4A_gKCYcVFxn4AedVutQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>857427227</pqid></control><display><type>article</type><title>Differentially Flat Design of Bipeds Ensuring Limit Cycles</title><source>IEEE Xplore (Online service)</source><creator>Sangwan, V. ; Agrawal, S.K.</creator><creatorcontrib>Sangwan, V. ; Agrawal, S.K.</creatorcontrib><description>For bipedal walking, a set of joint trajectories is acceptable as long as it satisfies certain overall motion requirements, such as: 1) it is repetitive (limit cycles); 2) it allows the foot to clear ground; and 3) it allows the biped to move forward. Since the actual trajectory followed by a biped is not as important, a biped having some unactuated joints can also meet these motion requirements. Furthermore, due to physical constraints, a biped cannot have an actuator between the foot and the ground. Hence, it is underactuated during the phase when the foot is rolling on the ground. Besides underactuation, a bipedal robot has nonlinear dynamics and impacts. In general, it is difficult to prove existence of limit cycles for such systems. In this paper, a design methodology that renders planar bipedal robots differentially flat is presented. Differential flatness allows generation of parameterized limit cycles for this class of planar nonlinear underactuated bipeds. Sequential quadratic-programming-based numerical optimization routines are used to optimize these limit cycles while satisfying the motion constraints. The planning and control methodology is illustrated by a two-link biped.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2009.2033593</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Actuators ; Biped ; Constraint optimization ; Control systems ; Design engineering ; Design methodology ; differential flatness ; Dynamical systems ; Foot ; Grounds ; Humanoid robots ; Legged locomotion ; Limit-cycles ; Methodology ; Motion planning ; Nonlinear control systems ; Nonlinear dynamics ; Robots ; Trajectories ; underactuated</subject><ispartof>IEEE/ASME transactions on mechatronics, 2009-12, Vol.14 (6), p.647-657</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-8cf84e0861f813829cc09d4ab72867b95814385eb9a2bdbea0ecb556221c7e233</citedby><cites>FETCH-LOGICAL-c327t-8cf84e0861f813829cc09d4ab72867b95814385eb9a2bdbea0ecb556221c7e233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5308456$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Sangwan, V.</creatorcontrib><creatorcontrib>Agrawal, S.K.</creatorcontrib><title>Differentially Flat Design of Bipeds Ensuring Limit Cycles</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>For bipedal walking, a set of joint trajectories is acceptable as long as it satisfies certain overall motion requirements, such as: 1) it is repetitive (limit cycles); 2) it allows the foot to clear ground; and 3) it allows the biped to move forward. Since the actual trajectory followed by a biped is not as important, a biped having some unactuated joints can also meet these motion requirements. Furthermore, due to physical constraints, a biped cannot have an actuator between the foot and the ground. Hence, it is underactuated during the phase when the foot is rolling on the ground. Besides underactuation, a bipedal robot has nonlinear dynamics and impacts. In general, it is difficult to prove existence of limit cycles for such systems. In this paper, a design methodology that renders planar bipedal robots differentially flat is presented. Differential flatness allows generation of parameterized limit cycles for this class of planar nonlinear underactuated bipeds. Sequential quadratic-programming-based numerical optimization routines are used to optimize these limit cycles while satisfying the motion constraints. The planning and control methodology is illustrated by a two-link biped.</description><subject>Actuators</subject><subject>Biped</subject><subject>Constraint optimization</subject><subject>Control systems</subject><subject>Design engineering</subject><subject>Design methodology</subject><subject>differential flatness</subject><subject>Dynamical systems</subject><subject>Foot</subject><subject>Grounds</subject><subject>Humanoid robots</subject><subject>Legged locomotion</subject><subject>Limit-cycles</subject><subject>Methodology</subject><subject>Motion planning</subject><subject>Nonlinear control systems</subject><subject>Nonlinear dynamics</subject><subject>Robots</subject><subject>Trajectories</subject><subject>underactuated</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNpdkD1PwzAQhi0EEqXwB2CJmFhS_BnbbJC2FKmIpUhsluNeKldpUuxkyL8npRUDy90Nz_vq9CB0S_CEEKwfV--zfDGhGOthMCY0O0MjojlJMeFf58ONFUs5Z-ISXcW4xRhzgskIPU19WUKAuvW2qvpkXtk2mUL0mzppyuTF72Edk1kdu-DrTbL0O98mee8qiNfoorRVhJvTHqPP-WyVL9Llx-tb_rxMHaOyTZUrFQesMlIqwhTVzmG95raQVGWy0EIRzpSAQltarAuwGFwhREYpcRIoY2P0cOzdh-a7g9ianY8OqsrW0HTRkEwSmjE1tI_R_T9023ShHr4zSkhOJaVygOgRcqGJMUBp9sHvbOgNweZg0_zaNAeb5mRzCN0dQx4A_gKCYcVFxn4AedVutQ</recordid><startdate>20091201</startdate><enddate>20091201</enddate><creator>Sangwan, V.</creator><creator>Agrawal, S.K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20091201</creationdate><title>Differentially Flat Design of Bipeds Ensuring Limit Cycles</title><author>Sangwan, V. ; Agrawal, S.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-8cf84e0861f813829cc09d4ab72867b95814385eb9a2bdbea0ecb556221c7e233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Actuators</topic><topic>Biped</topic><topic>Constraint optimization</topic><topic>Control systems</topic><topic>Design engineering</topic><topic>Design methodology</topic><topic>differential flatness</topic><topic>Dynamical systems</topic><topic>Foot</topic><topic>Grounds</topic><topic>Humanoid robots</topic><topic>Legged locomotion</topic><topic>Limit-cycles</topic><topic>Methodology</topic><topic>Motion planning</topic><topic>Nonlinear control systems</topic><topic>Nonlinear dynamics</topic><topic>Robots</topic><topic>Trajectories</topic><topic>underactuated</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sangwan, V.</creatorcontrib><creatorcontrib>Agrawal, S.K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sangwan, V.</au><au>Agrawal, S.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differentially Flat Design of Bipeds Ensuring Limit Cycles</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2009-12-01</date><risdate>2009</risdate><volume>14</volume><issue>6</issue><spage>647</spage><epage>657</epage><pages>647-657</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>For bipedal walking, a set of joint trajectories is acceptable as long as it satisfies certain overall motion requirements, such as: 1) it is repetitive (limit cycles); 2) it allows the foot to clear ground; and 3) it allows the biped to move forward. Since the actual trajectory followed by a biped is not as important, a biped having some unactuated joints can also meet these motion requirements. Furthermore, due to physical constraints, a biped cannot have an actuator between the foot and the ground. Hence, it is underactuated during the phase when the foot is rolling on the ground. Besides underactuation, a bipedal robot has nonlinear dynamics and impacts. In general, it is difficult to prove existence of limit cycles for such systems. In this paper, a design methodology that renders planar bipedal robots differentially flat is presented. Differential flatness allows generation of parameterized limit cycles for this class of planar nonlinear underactuated bipeds. Sequential quadratic-programming-based numerical optimization routines are used to optimize these limit cycles while satisfying the motion constraints. The planning and control methodology is illustrated by a two-link biped.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMECH.2009.2033593</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1083-4435
ispartof IEEE/ASME transactions on mechatronics, 2009-12, Vol.14 (6), p.647-657
issn 1083-4435
1941-014X
language eng
recordid cdi_proquest_miscellaneous_1671263881
source IEEE Xplore (Online service)
subjects Actuators
Biped
Constraint optimization
Control systems
Design engineering
Design methodology
differential flatness
Dynamical systems
Foot
Grounds
Humanoid robots
Legged locomotion
Limit-cycles
Methodology
Motion planning
Nonlinear control systems
Nonlinear dynamics
Robots
Trajectories
underactuated
title Differentially Flat Design of Bipeds Ensuring Limit Cycles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T17%3A13%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differentially%20Flat%20Design%20of%20Bipeds%20Ensuring%20Limit%20Cycles&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Sangwan,%20V.&rft.date=2009-12-01&rft.volume=14&rft.issue=6&rft.spage=647&rft.epage=657&rft.pages=647-657&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2009.2033593&rft_dat=%3Cproquest_ieee_%3E1671263881%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-8cf84e0861f813829cc09d4ab72867b95814385eb9a2bdbea0ecb556221c7e233%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=857427227&rft_id=info:pmid/&rft_ieee_id=5308456&rfr_iscdi=true