Loading…

The Energy Return on Investment for Algal Biocrude: Results for a Research Production Facility

This study is an experimental determination of the energy return on investment (EROI) for algal biocrude production at a research facility at the University of Texas at Austin (UT). During the period of this assessment, algae were grown at several cultivation scales and processed using centrifugatio...

Full description

Saved in:
Bibliographic Details
Published in:Bioenergy research 2012-06, Vol.5 (2), p.341-362
Main Authors: Beal, Colin M., Hebner, Robert E., Webber, Michael E., Ruoff, Rodney S., Seibert, A. Frank
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study is an experimental determination of the energy return on investment (EROI) for algal biocrude production at a research facility at the University of Texas at Austin (UT). During the period of this assessment, algae were grown at several cultivation scales and processed using centrifugation for harvesting, electromechanical cell lysing, and a microporous hollow fiber membrane contactor for lipid separation. The separated algal lipids represent a biocrude product that could be refined into fuel and the post-extraction biomass could be converted to methane. To determine the EROI, a second-order analysis was conducted, which includes direct and indirect energy flows, but does not include energy expenses associated with capital investments. The EROI for the production process evaluated here was significantly less than 1, however, the majority of the energy consumption resulted from non-optimized growth conditions. While the experimental results do not represent an expected typical case EROI for algal fuels, the approach and end-to-end experimental determination of the different inputs and outputs provides a useful outline of the important parameters to consider in such an analysis. The Experimental Case results are the first known experimental energy balance for an integrated algal biocrude production facility, and as such, are expected to be helpful for setting research and development priorities. In addition to the Experimental Case (based on direct measurements), three analytical cases were considered in this work: (1) a Reduced (Inputs) Case , (2) a Highly Productive Case , and (3) a Literature Model . The Reduced (Inputs) Case and the Highly Productive Case speculate the energy use for a similar system in an improved, commercial-scale production setting. The Literature Model is populated with relevant data that have previously been reported in the literature. For the Experimental Case , Reduced Case , Highly Productive Case , and Literature Model , the estimated second-order EROI was 9.2 × 10 −4 , 0.074, 0.22, and 0.35, respectively. These results were dominated by growth inputs (96%, 89%, 87%, and 61% of the total energy requirement, respectively). Furthermore, the EROI was adjusted using quality factors that were calculated according to the price of each input, yielding a quality-adjusted EROI that parallels a partial financial return on investment analysis. For the Experimental Case , the Reduced Case , and the Highly Productive Case , the qu
ISSN:1939-1234
1939-1242
DOI:10.1007/s12155-011-9128-4