Loading…
Modified Weibull model: A Bayes study using MCMC approach based on progressive censoring data
In this paper, we investigate the problem of point and interval estimations for the modified Weibull distribution (MWD) using progressively type-II censored sample. The maximum likelihood (ML), Bayes, and parametric bootstrap methods are used for estimating the unknown parameters as well as some lif...
Saved in:
Published in: | Reliability engineering & system safety 2012-04, Vol.100, p.48-57 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c363t-115ace3fb81cf45e621c71ecd7525d8a7e2b066affb5e833d770cc13f0aa1433 |
---|---|
cites | cdi_FETCH-LOGICAL-c363t-115ace3fb81cf45e621c71ecd7525d8a7e2b066affb5e833d770cc13f0aa1433 |
container_end_page | 57 |
container_issue | |
container_start_page | 48 |
container_title | Reliability engineering & system safety |
container_volume | 100 |
creator | Soliman, Ahmed A. Abd-Ellah, Ahmed H. Abou-Elheggag, Naser A. Ahmed, Essam A. |
description | In this paper, we investigate the problem of point and interval estimations for the modified Weibull distribution (MWD) using progressively type-II censored sample. The maximum likelihood (ML), Bayes, and parametric bootstrap methods are used for estimating the unknown parameters as well as some lifetime parameters (reliability and hazard functions). Also, we propose to apply Markov chain Monte Carlo (MCMC) technique to carry out a Bayesian estimation procedure. Bayes estimates and the credible intervals are obtained under the assumptions of informative and noninformative priors. The results of Bayes method are obtained under both the balanced squared error loss (bSEL) and balanced linear-exponential (bLINEX) loss. We show that these loss functions are more general, which include the MLE and both symmetric and asymmetric Bayes estimates as special cases. Finally, Two real data sets have been analyzed for illustrative purposes. |
doi_str_mv | 10.1016/j.ress.2011.12.013 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671284777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0951832011002766</els_id><sourcerecordid>1671284777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-115ace3fb81cf45e621c71ecd7525d8a7e2b066affb5e833d770cc13f0aa1433</originalsourceid><addsrcrecordid>eNp9kEFr3DAQhUVpIdu0fyAnXQq92NVIK8lbekmXtglkySWQUxGyNEq1eO2txg7sv4_Nhh57Gga-92beY-wKRA0CzJd9XZColgKgBlkLUG_YChq7qUSjzFu2EhsNVaOkuGDvifZCiPVG2xX7vRtiThkjf8TcTl3HD0PE7iu_5t_9CYnTOMUTnyj3T3y33W25Px7L4MMf3nqaZUPP5_1pOZ-fkQfsaSgLHP3oP7B3yXeEH1_nJXv4-eNhe1Pd3f-63V7fVUEZNVYA2gdUqW0gpLVGIyFYwBCtljo23qJshTE-pVZjo1S0VoQAKgnvYa3UJft8tp0_-Tshje6QKWDX-R6HiRwYC7JZW2tnVJ7RUAaigskdSz74cnIg3FKl27sli1uqdCDdXOUs-vTq7yn4LhXfh0z_lFIbLSyYmft25nDO-pyxOAoZ-4AxFwyji0P-35kXLVGKQw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671284777</pqid></control><display><type>article</type><title>Modified Weibull model: A Bayes study using MCMC approach based on progressive censoring data</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Soliman, Ahmed A. ; Abd-Ellah, Ahmed H. ; Abou-Elheggag, Naser A. ; Ahmed, Essam A.</creator><creatorcontrib>Soliman, Ahmed A. ; Abd-Ellah, Ahmed H. ; Abou-Elheggag, Naser A. ; Ahmed, Essam A.</creatorcontrib><description>In this paper, we investigate the problem of point and interval estimations for the modified Weibull distribution (MWD) using progressively type-II censored sample. The maximum likelihood (ML), Bayes, and parametric bootstrap methods are used for estimating the unknown parameters as well as some lifetime parameters (reliability and hazard functions). Also, we propose to apply Markov chain Monte Carlo (MCMC) technique to carry out a Bayesian estimation procedure. Bayes estimates and the credible intervals are obtained under the assumptions of informative and noninformative priors. The results of Bayes method are obtained under both the balanced squared error loss (bSEL) and balanced linear-exponential (bLINEX) loss. We show that these loss functions are more general, which include the MLE and both symmetric and asymmetric Bayes estimates as special cases. Finally, Two real data sets have been analyzed for illustrative purposes.</description><identifier>ISSN: 0951-8320</identifier><identifier>EISSN: 1879-0836</identifier><identifier>DOI: 10.1016/j.ress.2011.12.013</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Asymmetry ; Balanced loss ; Balancing ; Bayesian analysis ; Bayesian estimation ; Bootstrap ; Estimates ; Exact sciences and technology ; Gibbs and Metropolis–Hasting samplers ; Hybrid MCMC approach ; Intervals ; Mathematical models ; Mathematics ; Maximum likelihood estimation ; Modified Weibull distribution ; Monte Carlo methods ; Operational research and scientific management ; Operational research. Management science ; Parametric inference ; Probability and statistics ; Progressive type-II censoring ; Reliability theory. Replacement problems ; Sampling theory, sample surveys ; Sciences and techniques of general use ; Statistics</subject><ispartof>Reliability engineering & system safety, 2012-04, Vol.100, p.48-57</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-115ace3fb81cf45e621c71ecd7525d8a7e2b066affb5e833d770cc13f0aa1433</citedby><cites>FETCH-LOGICAL-c363t-115ace3fb81cf45e621c71ecd7525d8a7e2b066affb5e833d770cc13f0aa1433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25650716$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Soliman, Ahmed A.</creatorcontrib><creatorcontrib>Abd-Ellah, Ahmed H.</creatorcontrib><creatorcontrib>Abou-Elheggag, Naser A.</creatorcontrib><creatorcontrib>Ahmed, Essam A.</creatorcontrib><title>Modified Weibull model: A Bayes study using MCMC approach based on progressive censoring data</title><title>Reliability engineering & system safety</title><description>In this paper, we investigate the problem of point and interval estimations for the modified Weibull distribution (MWD) using progressively type-II censored sample. The maximum likelihood (ML), Bayes, and parametric bootstrap methods are used for estimating the unknown parameters as well as some lifetime parameters (reliability and hazard functions). Also, we propose to apply Markov chain Monte Carlo (MCMC) technique to carry out a Bayesian estimation procedure. Bayes estimates and the credible intervals are obtained under the assumptions of informative and noninformative priors. The results of Bayes method are obtained under both the balanced squared error loss (bSEL) and balanced linear-exponential (bLINEX) loss. We show that these loss functions are more general, which include the MLE and both symmetric and asymmetric Bayes estimates as special cases. Finally, Two real data sets have been analyzed for illustrative purposes.</description><subject>Applied sciences</subject><subject>Asymmetry</subject><subject>Balanced loss</subject><subject>Balancing</subject><subject>Bayesian analysis</subject><subject>Bayesian estimation</subject><subject>Bootstrap</subject><subject>Estimates</subject><subject>Exact sciences and technology</subject><subject>Gibbs and Metropolis–Hasting samplers</subject><subject>Hybrid MCMC approach</subject><subject>Intervals</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Maximum likelihood estimation</subject><subject>Modified Weibull distribution</subject><subject>Monte Carlo methods</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Parametric inference</subject><subject>Probability and statistics</subject><subject>Progressive type-II censoring</subject><subject>Reliability theory. Replacement problems</subject><subject>Sampling theory, sample surveys</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><issn>0951-8320</issn><issn>1879-0836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kEFr3DAQhUVpIdu0fyAnXQq92NVIK8lbekmXtglkySWQUxGyNEq1eO2txg7sv4_Nhh57Gga-92beY-wKRA0CzJd9XZColgKgBlkLUG_YChq7qUSjzFu2EhsNVaOkuGDvifZCiPVG2xX7vRtiThkjf8TcTl3HD0PE7iu_5t_9CYnTOMUTnyj3T3y33W25Px7L4MMf3nqaZUPP5_1pOZ-fkQfsaSgLHP3oP7B3yXeEH1_nJXv4-eNhe1Pd3f-63V7fVUEZNVYA2gdUqW0gpLVGIyFYwBCtljo23qJshTE-pVZjo1S0VoQAKgnvYa3UJft8tp0_-Tshje6QKWDX-R6HiRwYC7JZW2tnVJ7RUAaigskdSz74cnIg3FKl27sli1uqdCDdXOUs-vTq7yn4LhXfh0z_lFIbLSyYmft25nDO-pyxOAoZ-4AxFwyji0P-35kXLVGKQw</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Soliman, Ahmed A.</creator><creator>Abd-Ellah, Ahmed H.</creator><creator>Abou-Elheggag, Naser A.</creator><creator>Ahmed, Essam A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20120401</creationdate><title>Modified Weibull model: A Bayes study using MCMC approach based on progressive censoring data</title><author>Soliman, Ahmed A. ; Abd-Ellah, Ahmed H. ; Abou-Elheggag, Naser A. ; Ahmed, Essam A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-115ace3fb81cf45e621c71ecd7525d8a7e2b066affb5e833d770cc13f0aa1433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Asymmetry</topic><topic>Balanced loss</topic><topic>Balancing</topic><topic>Bayesian analysis</topic><topic>Bayesian estimation</topic><topic>Bootstrap</topic><topic>Estimates</topic><topic>Exact sciences and technology</topic><topic>Gibbs and Metropolis–Hasting samplers</topic><topic>Hybrid MCMC approach</topic><topic>Intervals</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Maximum likelihood estimation</topic><topic>Modified Weibull distribution</topic><topic>Monte Carlo methods</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Parametric inference</topic><topic>Probability and statistics</topic><topic>Progressive type-II censoring</topic><topic>Reliability theory. Replacement problems</topic><topic>Sampling theory, sample surveys</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soliman, Ahmed A.</creatorcontrib><creatorcontrib>Abd-Ellah, Ahmed H.</creatorcontrib><creatorcontrib>Abou-Elheggag, Naser A.</creatorcontrib><creatorcontrib>Ahmed, Essam A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Reliability engineering & system safety</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soliman, Ahmed A.</au><au>Abd-Ellah, Ahmed H.</au><au>Abou-Elheggag, Naser A.</au><au>Ahmed, Essam A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modified Weibull model: A Bayes study using MCMC approach based on progressive censoring data</atitle><jtitle>Reliability engineering & system safety</jtitle><date>2012-04-01</date><risdate>2012</risdate><volume>100</volume><spage>48</spage><epage>57</epage><pages>48-57</pages><issn>0951-8320</issn><eissn>1879-0836</eissn><abstract>In this paper, we investigate the problem of point and interval estimations for the modified Weibull distribution (MWD) using progressively type-II censored sample. The maximum likelihood (ML), Bayes, and parametric bootstrap methods are used for estimating the unknown parameters as well as some lifetime parameters (reliability and hazard functions). Also, we propose to apply Markov chain Monte Carlo (MCMC) technique to carry out a Bayesian estimation procedure. Bayes estimates and the credible intervals are obtained under the assumptions of informative and noninformative priors. The results of Bayes method are obtained under both the balanced squared error loss (bSEL) and balanced linear-exponential (bLINEX) loss. We show that these loss functions are more general, which include the MLE and both symmetric and asymmetric Bayes estimates as special cases. Finally, Two real data sets have been analyzed for illustrative purposes.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ress.2011.12.013</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0951-8320 |
ispartof | Reliability engineering & system safety, 2012-04, Vol.100, p.48-57 |
issn | 0951-8320 1879-0836 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671284777 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Applied sciences Asymmetry Balanced loss Balancing Bayesian analysis Bayesian estimation Bootstrap Estimates Exact sciences and technology Gibbs and Metropolis–Hasting samplers Hybrid MCMC approach Intervals Mathematical models Mathematics Maximum likelihood estimation Modified Weibull distribution Monte Carlo methods Operational research and scientific management Operational research. Management science Parametric inference Probability and statistics Progressive type-II censoring Reliability theory. Replacement problems Sampling theory, sample surveys Sciences and techniques of general use Statistics |
title | Modified Weibull model: A Bayes study using MCMC approach based on progressive censoring data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T09%3A53%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modified%20Weibull%20model:%20A%20Bayes%20study%20using%20MCMC%20approach%20based%20on%20progressive%20censoring%20data&rft.jtitle=Reliability%20engineering%20&%20system%20safety&rft.au=Soliman,%20Ahmed%20A.&rft.date=2012-04-01&rft.volume=100&rft.spage=48&rft.epage=57&rft.pages=48-57&rft.issn=0951-8320&rft.eissn=1879-0836&rft_id=info:doi/10.1016/j.ress.2011.12.013&rft_dat=%3Cproquest_cross%3E1671284777%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-115ace3fb81cf45e621c71ecd7525d8a7e2b066affb5e833d770cc13f0aa1433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671284777&rft_id=info:pmid/&rfr_iscdi=true |