Loading…

Modified Weibull model: A Bayes study using MCMC approach based on progressive censoring data

In this paper, we investigate the problem of point and interval estimations for the modified Weibull distribution (MWD) using progressively type-II censored sample. The maximum likelihood (ML), Bayes, and parametric bootstrap methods are used for estimating the unknown parameters as well as some lif...

Full description

Saved in:
Bibliographic Details
Published in:Reliability engineering & system safety 2012-04, Vol.100, p.48-57
Main Authors: Soliman, Ahmed A., Abd-Ellah, Ahmed H., Abou-Elheggag, Naser A., Ahmed, Essam A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c363t-115ace3fb81cf45e621c71ecd7525d8a7e2b066affb5e833d770cc13f0aa1433
cites cdi_FETCH-LOGICAL-c363t-115ace3fb81cf45e621c71ecd7525d8a7e2b066affb5e833d770cc13f0aa1433
container_end_page 57
container_issue
container_start_page 48
container_title Reliability engineering & system safety
container_volume 100
creator Soliman, Ahmed A.
Abd-Ellah, Ahmed H.
Abou-Elheggag, Naser A.
Ahmed, Essam A.
description In this paper, we investigate the problem of point and interval estimations for the modified Weibull distribution (MWD) using progressively type-II censored sample. The maximum likelihood (ML), Bayes, and parametric bootstrap methods are used for estimating the unknown parameters as well as some lifetime parameters (reliability and hazard functions). Also, we propose to apply Markov chain Monte Carlo (MCMC) technique to carry out a Bayesian estimation procedure. Bayes estimates and the credible intervals are obtained under the assumptions of informative and noninformative priors. The results of Bayes method are obtained under both the balanced squared error loss (bSEL) and balanced linear-exponential (bLINEX) loss. We show that these loss functions are more general, which include the MLE and both symmetric and asymmetric Bayes estimates as special cases. Finally, Two real data sets have been analyzed for illustrative purposes.
doi_str_mv 10.1016/j.ress.2011.12.013
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671284777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0951832011002766</els_id><sourcerecordid>1671284777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-115ace3fb81cf45e621c71ecd7525d8a7e2b066affb5e833d770cc13f0aa1433</originalsourceid><addsrcrecordid>eNp9kEFr3DAQhUVpIdu0fyAnXQq92NVIK8lbekmXtglkySWQUxGyNEq1eO2txg7sv4_Nhh57Gga-92beY-wKRA0CzJd9XZColgKgBlkLUG_YChq7qUSjzFu2EhsNVaOkuGDvifZCiPVG2xX7vRtiThkjf8TcTl3HD0PE7iu_5t_9CYnTOMUTnyj3T3y33W25Px7L4MMf3nqaZUPP5_1pOZ-fkQfsaSgLHP3oP7B3yXeEH1_nJXv4-eNhe1Pd3f-63V7fVUEZNVYA2gdUqW0gpLVGIyFYwBCtljo23qJshTE-pVZjo1S0VoQAKgnvYa3UJft8tp0_-Tshje6QKWDX-R6HiRwYC7JZW2tnVJ7RUAaigskdSz74cnIg3FKl27sli1uqdCDdXOUs-vTq7yn4LhXfh0z_lFIbLSyYmft25nDO-pyxOAoZ-4AxFwyji0P-35kXLVGKQw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671284777</pqid></control><display><type>article</type><title>Modified Weibull model: A Bayes study using MCMC approach based on progressive censoring data</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Soliman, Ahmed A. ; Abd-Ellah, Ahmed H. ; Abou-Elheggag, Naser A. ; Ahmed, Essam A.</creator><creatorcontrib>Soliman, Ahmed A. ; Abd-Ellah, Ahmed H. ; Abou-Elheggag, Naser A. ; Ahmed, Essam A.</creatorcontrib><description>In this paper, we investigate the problem of point and interval estimations for the modified Weibull distribution (MWD) using progressively type-II censored sample. The maximum likelihood (ML), Bayes, and parametric bootstrap methods are used for estimating the unknown parameters as well as some lifetime parameters (reliability and hazard functions). Also, we propose to apply Markov chain Monte Carlo (MCMC) technique to carry out a Bayesian estimation procedure. Bayes estimates and the credible intervals are obtained under the assumptions of informative and noninformative priors. The results of Bayes method are obtained under both the balanced squared error loss (bSEL) and balanced linear-exponential (bLINEX) loss. We show that these loss functions are more general, which include the MLE and both symmetric and asymmetric Bayes estimates as special cases. Finally, Two real data sets have been analyzed for illustrative purposes.</description><identifier>ISSN: 0951-8320</identifier><identifier>EISSN: 1879-0836</identifier><identifier>DOI: 10.1016/j.ress.2011.12.013</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Asymmetry ; Balanced loss ; Balancing ; Bayesian analysis ; Bayesian estimation ; Bootstrap ; Estimates ; Exact sciences and technology ; Gibbs and Metropolis–Hasting samplers ; Hybrid MCMC approach ; Intervals ; Mathematical models ; Mathematics ; Maximum likelihood estimation ; Modified Weibull distribution ; Monte Carlo methods ; Operational research and scientific management ; Operational research. Management science ; Parametric inference ; Probability and statistics ; Progressive type-II censoring ; Reliability theory. Replacement problems ; Sampling theory, sample surveys ; Sciences and techniques of general use ; Statistics</subject><ispartof>Reliability engineering &amp; system safety, 2012-04, Vol.100, p.48-57</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-115ace3fb81cf45e621c71ecd7525d8a7e2b066affb5e833d770cc13f0aa1433</citedby><cites>FETCH-LOGICAL-c363t-115ace3fb81cf45e621c71ecd7525d8a7e2b066affb5e833d770cc13f0aa1433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25650716$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Soliman, Ahmed A.</creatorcontrib><creatorcontrib>Abd-Ellah, Ahmed H.</creatorcontrib><creatorcontrib>Abou-Elheggag, Naser A.</creatorcontrib><creatorcontrib>Ahmed, Essam A.</creatorcontrib><title>Modified Weibull model: A Bayes study using MCMC approach based on progressive censoring data</title><title>Reliability engineering &amp; system safety</title><description>In this paper, we investigate the problem of point and interval estimations for the modified Weibull distribution (MWD) using progressively type-II censored sample. The maximum likelihood (ML), Bayes, and parametric bootstrap methods are used for estimating the unknown parameters as well as some lifetime parameters (reliability and hazard functions). Also, we propose to apply Markov chain Monte Carlo (MCMC) technique to carry out a Bayesian estimation procedure. Bayes estimates and the credible intervals are obtained under the assumptions of informative and noninformative priors. The results of Bayes method are obtained under both the balanced squared error loss (bSEL) and balanced linear-exponential (bLINEX) loss. We show that these loss functions are more general, which include the MLE and both symmetric and asymmetric Bayes estimates as special cases. Finally, Two real data sets have been analyzed for illustrative purposes.</description><subject>Applied sciences</subject><subject>Asymmetry</subject><subject>Balanced loss</subject><subject>Balancing</subject><subject>Bayesian analysis</subject><subject>Bayesian estimation</subject><subject>Bootstrap</subject><subject>Estimates</subject><subject>Exact sciences and technology</subject><subject>Gibbs and Metropolis–Hasting samplers</subject><subject>Hybrid MCMC approach</subject><subject>Intervals</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Maximum likelihood estimation</subject><subject>Modified Weibull distribution</subject><subject>Monte Carlo methods</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Parametric inference</subject><subject>Probability and statistics</subject><subject>Progressive type-II censoring</subject><subject>Reliability theory. Replacement problems</subject><subject>Sampling theory, sample surveys</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><issn>0951-8320</issn><issn>1879-0836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kEFr3DAQhUVpIdu0fyAnXQq92NVIK8lbekmXtglkySWQUxGyNEq1eO2txg7sv4_Nhh57Gga-92beY-wKRA0CzJd9XZColgKgBlkLUG_YChq7qUSjzFu2EhsNVaOkuGDvifZCiPVG2xX7vRtiThkjf8TcTl3HD0PE7iu_5t_9CYnTOMUTnyj3T3y33W25Px7L4MMf3nqaZUPP5_1pOZ-fkQfsaSgLHP3oP7B3yXeEH1_nJXv4-eNhe1Pd3f-63V7fVUEZNVYA2gdUqW0gpLVGIyFYwBCtljo23qJshTE-pVZjo1S0VoQAKgnvYa3UJft8tp0_-Tshje6QKWDX-R6HiRwYC7JZW2tnVJ7RUAaigskdSz74cnIg3FKl27sli1uqdCDdXOUs-vTq7yn4LhXfh0z_lFIbLSyYmft25nDO-pyxOAoZ-4AxFwyji0P-35kXLVGKQw</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Soliman, Ahmed A.</creator><creator>Abd-Ellah, Ahmed H.</creator><creator>Abou-Elheggag, Naser A.</creator><creator>Ahmed, Essam A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20120401</creationdate><title>Modified Weibull model: A Bayes study using MCMC approach based on progressive censoring data</title><author>Soliman, Ahmed A. ; Abd-Ellah, Ahmed H. ; Abou-Elheggag, Naser A. ; Ahmed, Essam A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-115ace3fb81cf45e621c71ecd7525d8a7e2b066affb5e833d770cc13f0aa1433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Asymmetry</topic><topic>Balanced loss</topic><topic>Balancing</topic><topic>Bayesian analysis</topic><topic>Bayesian estimation</topic><topic>Bootstrap</topic><topic>Estimates</topic><topic>Exact sciences and technology</topic><topic>Gibbs and Metropolis–Hasting samplers</topic><topic>Hybrid MCMC approach</topic><topic>Intervals</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Maximum likelihood estimation</topic><topic>Modified Weibull distribution</topic><topic>Monte Carlo methods</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Parametric inference</topic><topic>Probability and statistics</topic><topic>Progressive type-II censoring</topic><topic>Reliability theory. Replacement problems</topic><topic>Sampling theory, sample surveys</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soliman, Ahmed A.</creatorcontrib><creatorcontrib>Abd-Ellah, Ahmed H.</creatorcontrib><creatorcontrib>Abou-Elheggag, Naser A.</creatorcontrib><creatorcontrib>Ahmed, Essam A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Reliability engineering &amp; system safety</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soliman, Ahmed A.</au><au>Abd-Ellah, Ahmed H.</au><au>Abou-Elheggag, Naser A.</au><au>Ahmed, Essam A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modified Weibull model: A Bayes study using MCMC approach based on progressive censoring data</atitle><jtitle>Reliability engineering &amp; system safety</jtitle><date>2012-04-01</date><risdate>2012</risdate><volume>100</volume><spage>48</spage><epage>57</epage><pages>48-57</pages><issn>0951-8320</issn><eissn>1879-0836</eissn><abstract>In this paper, we investigate the problem of point and interval estimations for the modified Weibull distribution (MWD) using progressively type-II censored sample. The maximum likelihood (ML), Bayes, and parametric bootstrap methods are used for estimating the unknown parameters as well as some lifetime parameters (reliability and hazard functions). Also, we propose to apply Markov chain Monte Carlo (MCMC) technique to carry out a Bayesian estimation procedure. Bayes estimates and the credible intervals are obtained under the assumptions of informative and noninformative priors. The results of Bayes method are obtained under both the balanced squared error loss (bSEL) and balanced linear-exponential (bLINEX) loss. We show that these loss functions are more general, which include the MLE and both symmetric and asymmetric Bayes estimates as special cases. Finally, Two real data sets have been analyzed for illustrative purposes.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ress.2011.12.013</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0951-8320
ispartof Reliability engineering & system safety, 2012-04, Vol.100, p.48-57
issn 0951-8320
1879-0836
language eng
recordid cdi_proquest_miscellaneous_1671284777
source ScienceDirect Freedom Collection 2022-2024
subjects Applied sciences
Asymmetry
Balanced loss
Balancing
Bayesian analysis
Bayesian estimation
Bootstrap
Estimates
Exact sciences and technology
Gibbs and Metropolis–Hasting samplers
Hybrid MCMC approach
Intervals
Mathematical models
Mathematics
Maximum likelihood estimation
Modified Weibull distribution
Monte Carlo methods
Operational research and scientific management
Operational research. Management science
Parametric inference
Probability and statistics
Progressive type-II censoring
Reliability theory. Replacement problems
Sampling theory, sample surveys
Sciences and techniques of general use
Statistics
title Modified Weibull model: A Bayes study using MCMC approach based on progressive censoring data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T09%3A53%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modified%20Weibull%20model:%20A%20Bayes%20study%20using%20MCMC%20approach%20based%20on%20progressive%20censoring%20data&rft.jtitle=Reliability%20engineering%20&%20system%20safety&rft.au=Soliman,%20Ahmed%20A.&rft.date=2012-04-01&rft.volume=100&rft.spage=48&rft.epage=57&rft.pages=48-57&rft.issn=0951-8320&rft.eissn=1879-0836&rft_id=info:doi/10.1016/j.ress.2011.12.013&rft_dat=%3Cproquest_cross%3E1671284777%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-115ace3fb81cf45e621c71ecd7525d8a7e2b066affb5e833d770cc13f0aa1433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671284777&rft_id=info:pmid/&rfr_iscdi=true