Loading…

Adaptive Estimation of Heteroscedastic Money Demand Model of Pakistan

For the problem of estimation of Money demand model of Pakistan, money supply (M1) shows heteroscedasticity of the unknown form. For estimation of such model we compare two adaptive estimators with ordinary least squares estimator and show the attractive performance of the adaptive estimators, namel...

Full description

Saved in:
Bibliographic Details
Published in:Pakistan journal of statistics and operation research 2007-07, Vol.3 (2), p.109
Main Authors: Aslam, Muhammad, Pasha, G R
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c269t-d19d73acf554f673050fb7457cb6a52b092ec8b7b039f2a428623ff578076ea23
cites
container_end_page
container_issue 2
container_start_page 109
container_title Pakistan journal of statistics and operation research
container_volume 3
creator Aslam, Muhammad
Pasha, G R
description For the problem of estimation of Money demand model of Pakistan, money supply (M1) shows heteroscedasticity of the unknown form. For estimation of such model we compare two adaptive estimators with ordinary least squares estimator and show the attractive performance of the adaptive estimators, namely, nonparametric kernel estimator and nearest neighbour regression estimator. These comparisons are made on the basis standard errors of the estimated coefficients, standard error of regression, Akaike Information Criteria (AIC) value, and the Durban-Watson statistic for autocorrelation. We further show that nearest neighbour regression estimator performs better when comparing with the other nonparametric kernel estimator.
doi_str_mv 10.18187/pjsor.v3i2.65
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671285582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671285582</sourcerecordid><originalsourceid>FETCH-LOGICAL-c269t-d19d73acf554f673050fb7457cb6a52b092ec8b7b039f2a428623ff578076ea23</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0EEhV0ZY6YWBLsc_yRsSqFIhXBALPlJLbkksYhdiv13-O0TEynOz26e-9B6I7ggkgixeOwDX4sDtRBwdkFmgEAzpkk-BLNEsFzEIRco3kIrsbAK0EYiBlaLVo9RHcw2SpEt9PR-T7zNlubaEYfGtPqNG-yN9-bY_ZkdrpvU9OabqI-9LcLUfe36MrqLpj5X71BX8-rz-U637y_vC4Xm7xJF2PekqoVVDeWsdJyQTHDthYlE03NNYMaV2AaWYsa08qCLkFyoNYyIbHgRgO9QQ_nvcPof_YmRLVzKWPX6d74fVCECwKSMTmh9__Qrd-PfUqnKsAlkLKcoOIMNenXMBqrhjFJGI-KYHXyqk5e1eRVcUZ_AXvta6s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920421442</pqid></control><display><type>article</type><title>Adaptive Estimation of Heteroscedastic Money Demand Model of Pakistan</title><source>IngentaConnect Journals</source><source>ProQuest - Publicly Available Content Database</source><creator>Aslam, Muhammad ; Pasha, G R</creator><creatorcontrib>Aslam, Muhammad ; Pasha, G R</creatorcontrib><description>For the problem of estimation of Money demand model of Pakistan, money supply (M1) shows heteroscedasticity of the unknown form. For estimation of such model we compare two adaptive estimators with ordinary least squares estimator and show the attractive performance of the adaptive estimators, namely, nonparametric kernel estimator and nearest neighbour regression estimator. These comparisons are made on the basis standard errors of the estimated coefficients, standard error of regression, Akaike Information Criteria (AIC) value, and the Durban-Watson statistic for autocorrelation. We further show that nearest neighbour regression estimator performs better when comparing with the other nonparametric kernel estimator.</description><identifier>ISSN: 1816-2711</identifier><identifier>EISSN: 2220-5810</identifier><identifier>DOI: 10.18187/pjsor.v3i2.65</identifier><language>eng</language><publisher>Lahore: University of the Punjab, College of Statistical &amp; Actuarial Science</publisher><subject>Demand ; Estimators ; Kernels ; Least squares method ; Marketing ; Regression ; Standard error ; Statistics</subject><ispartof>Pakistan journal of statistics and operation research, 2007-07, Vol.3 (2), p.109</ispartof><rights>Copyright University of the Punjab, College of Statistical &amp; Actuarial Science Jul 2007</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c269t-d19d73acf554f673050fb7457cb6a52b092ec8b7b039f2a428623ff578076ea23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/920421442?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,37012,44589</link.rule.ids></links><search><creatorcontrib>Aslam, Muhammad</creatorcontrib><creatorcontrib>Pasha, G R</creatorcontrib><title>Adaptive Estimation of Heteroscedastic Money Demand Model of Pakistan</title><title>Pakistan journal of statistics and operation research</title><description>For the problem of estimation of Money demand model of Pakistan, money supply (M1) shows heteroscedasticity of the unknown form. For estimation of such model we compare two adaptive estimators with ordinary least squares estimator and show the attractive performance of the adaptive estimators, namely, nonparametric kernel estimator and nearest neighbour regression estimator. These comparisons are made on the basis standard errors of the estimated coefficients, standard error of regression, Akaike Information Criteria (AIC) value, and the Durban-Watson statistic for autocorrelation. We further show that nearest neighbour regression estimator performs better when comparing with the other nonparametric kernel estimator.</description><subject>Demand</subject><subject>Estimators</subject><subject>Kernels</subject><subject>Least squares method</subject><subject>Marketing</subject><subject>Regression</subject><subject>Standard error</subject><subject>Statistics</subject><issn>1816-2711</issn><issn>2220-5810</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkD1PwzAQhi0EEhV0ZY6YWBLsc_yRsSqFIhXBALPlJLbkksYhdiv13-O0TEynOz26e-9B6I7ggkgixeOwDX4sDtRBwdkFmgEAzpkk-BLNEsFzEIRco3kIrsbAK0EYiBlaLVo9RHcw2SpEt9PR-T7zNlubaEYfGtPqNG-yN9-bY_ZkdrpvU9OabqI-9LcLUfe36MrqLpj5X71BX8-rz-U637y_vC4Xm7xJF2PekqoVVDeWsdJyQTHDthYlE03NNYMaV2AaWYsa08qCLkFyoNYyIbHgRgO9QQ_nvcPof_YmRLVzKWPX6d74fVCECwKSMTmh9__Qrd-PfUqnKsAlkLKcoOIMNenXMBqrhjFJGI-KYHXyqk5e1eRVcUZ_AXvta6s</recordid><startdate>20070701</startdate><enddate>20070701</enddate><creator>Aslam, Muhammad</creator><creator>Pasha, G R</creator><general>University of the Punjab, College of Statistical &amp; Actuarial Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20070701</creationdate><title>Adaptive Estimation of Heteroscedastic Money Demand Model of Pakistan</title><author>Aslam, Muhammad ; Pasha, G R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c269t-d19d73acf554f673050fb7457cb6a52b092ec8b7b039f2a428623ff578076ea23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Demand</topic><topic>Estimators</topic><topic>Kernels</topic><topic>Least squares method</topic><topic>Marketing</topic><topic>Regression</topic><topic>Standard error</topic><topic>Statistics</topic><toplevel>online_resources</toplevel><creatorcontrib>Aslam, Muhammad</creatorcontrib><creatorcontrib>Pasha, G R</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Pakistan journal of statistics and operation research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aslam, Muhammad</au><au>Pasha, G R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Estimation of Heteroscedastic Money Demand Model of Pakistan</atitle><jtitle>Pakistan journal of statistics and operation research</jtitle><date>2007-07-01</date><risdate>2007</risdate><volume>3</volume><issue>2</issue><spage>109</spage><pages>109-</pages><issn>1816-2711</issn><eissn>2220-5810</eissn><abstract>For the problem of estimation of Money demand model of Pakistan, money supply (M1) shows heteroscedasticity of the unknown form. For estimation of such model we compare two adaptive estimators with ordinary least squares estimator and show the attractive performance of the adaptive estimators, namely, nonparametric kernel estimator and nearest neighbour regression estimator. These comparisons are made on the basis standard errors of the estimated coefficients, standard error of regression, Akaike Information Criteria (AIC) value, and the Durban-Watson statistic for autocorrelation. We further show that nearest neighbour regression estimator performs better when comparing with the other nonparametric kernel estimator.</abstract><cop>Lahore</cop><pub>University of the Punjab, College of Statistical &amp; Actuarial Science</pub><doi>10.18187/pjsor.v3i2.65</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1816-2711
ispartof Pakistan journal of statistics and operation research, 2007-07, Vol.3 (2), p.109
issn 1816-2711
2220-5810
language eng
recordid cdi_proquest_miscellaneous_1671285582
source IngentaConnect Journals; ProQuest - Publicly Available Content Database
subjects Demand
Estimators
Kernels
Least squares method
Marketing
Regression
Standard error
Statistics
title Adaptive Estimation of Heteroscedastic Money Demand Model of Pakistan
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A36%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Estimation%20of%20Heteroscedastic%20Money%20Demand%20Model%20of%20Pakistan&rft.jtitle=Pakistan%20journal%20of%20statistics%20and%20operation%20research&rft.au=Aslam,%20Muhammad&rft.date=2007-07-01&rft.volume=3&rft.issue=2&rft.spage=109&rft.pages=109-&rft.issn=1816-2711&rft.eissn=2220-5810&rft_id=info:doi/10.18187/pjsor.v3i2.65&rft_dat=%3Cproquest_cross%3E1671285582%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c269t-d19d73acf554f673050fb7457cb6a52b092ec8b7b039f2a428623ff578076ea23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=920421442&rft_id=info:pmid/&rfr_iscdi=true