Loading…
Adaptive Estimation of Heteroscedastic Money Demand Model of Pakistan
For the problem of estimation of Money demand model of Pakistan, money supply (M1) shows heteroscedasticity of the unknown form. For estimation of such model we compare two adaptive estimators with ordinary least squares estimator and show the attractive performance of the adaptive estimators, namel...
Saved in:
Published in: | Pakistan journal of statistics and operation research 2007-07, Vol.3 (2), p.109 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c269t-d19d73acf554f673050fb7457cb6a52b092ec8b7b039f2a428623ff578076ea23 |
---|---|
cites | |
container_end_page | |
container_issue | 2 |
container_start_page | 109 |
container_title | Pakistan journal of statistics and operation research |
container_volume | 3 |
creator | Aslam, Muhammad Pasha, G R |
description | For the problem of estimation of Money demand model of Pakistan, money supply (M1) shows heteroscedasticity of the unknown form. For estimation of such model we compare two adaptive estimators with ordinary least squares estimator and show the attractive performance of the adaptive estimators, namely, nonparametric kernel estimator and nearest neighbour regression estimator. These comparisons are made on the basis standard errors of the estimated coefficients, standard error of regression, Akaike Information Criteria (AIC) value, and the Durban-Watson statistic for autocorrelation. We further show that nearest neighbour regression estimator performs better when comparing with the other nonparametric kernel estimator. |
doi_str_mv | 10.18187/pjsor.v3i2.65 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671285582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671285582</sourcerecordid><originalsourceid>FETCH-LOGICAL-c269t-d19d73acf554f673050fb7457cb6a52b092ec8b7b039f2a428623ff578076ea23</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0EEhV0ZY6YWBLsc_yRsSqFIhXBALPlJLbkksYhdiv13-O0TEynOz26e-9B6I7ggkgixeOwDX4sDtRBwdkFmgEAzpkk-BLNEsFzEIRco3kIrsbAK0EYiBlaLVo9RHcw2SpEt9PR-T7zNlubaEYfGtPqNG-yN9-bY_ZkdrpvU9OabqI-9LcLUfe36MrqLpj5X71BX8-rz-U637y_vC4Xm7xJF2PekqoVVDeWsdJyQTHDthYlE03NNYMaV2AaWYsa08qCLkFyoNYyIbHgRgO9QQ_nvcPof_YmRLVzKWPX6d74fVCECwKSMTmh9__Qrd-PfUqnKsAlkLKcoOIMNenXMBqrhjFJGI-KYHXyqk5e1eRVcUZ_AXvta6s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920421442</pqid></control><display><type>article</type><title>Adaptive Estimation of Heteroscedastic Money Demand Model of Pakistan</title><source>IngentaConnect Journals</source><source>ProQuest - Publicly Available Content Database</source><creator>Aslam, Muhammad ; Pasha, G R</creator><creatorcontrib>Aslam, Muhammad ; Pasha, G R</creatorcontrib><description>For the problem of estimation of Money demand model of Pakistan, money supply (M1) shows heteroscedasticity of the unknown form. For estimation of such model we compare two adaptive estimators with ordinary least squares estimator and show the attractive performance of the adaptive estimators, namely, nonparametric kernel estimator and nearest neighbour regression estimator. These comparisons are made on the basis standard errors of the estimated coefficients, standard error of regression, Akaike Information Criteria (AIC) value, and the Durban-Watson statistic for autocorrelation. We further show that nearest neighbour regression estimator performs better when comparing with the other nonparametric kernel estimator.</description><identifier>ISSN: 1816-2711</identifier><identifier>EISSN: 2220-5810</identifier><identifier>DOI: 10.18187/pjsor.v3i2.65</identifier><language>eng</language><publisher>Lahore: University of the Punjab, College of Statistical & Actuarial Science</publisher><subject>Demand ; Estimators ; Kernels ; Least squares method ; Marketing ; Regression ; Standard error ; Statistics</subject><ispartof>Pakistan journal of statistics and operation research, 2007-07, Vol.3 (2), p.109</ispartof><rights>Copyright University of the Punjab, College of Statistical & Actuarial Science Jul 2007</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c269t-d19d73acf554f673050fb7457cb6a52b092ec8b7b039f2a428623ff578076ea23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/920421442?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,37012,44589</link.rule.ids></links><search><creatorcontrib>Aslam, Muhammad</creatorcontrib><creatorcontrib>Pasha, G R</creatorcontrib><title>Adaptive Estimation of Heteroscedastic Money Demand Model of Pakistan</title><title>Pakistan journal of statistics and operation research</title><description>For the problem of estimation of Money demand model of Pakistan, money supply (M1) shows heteroscedasticity of the unknown form. For estimation of such model we compare two adaptive estimators with ordinary least squares estimator and show the attractive performance of the adaptive estimators, namely, nonparametric kernel estimator and nearest neighbour regression estimator. These comparisons are made on the basis standard errors of the estimated coefficients, standard error of regression, Akaike Information Criteria (AIC) value, and the Durban-Watson statistic for autocorrelation. We further show that nearest neighbour regression estimator performs better when comparing with the other nonparametric kernel estimator.</description><subject>Demand</subject><subject>Estimators</subject><subject>Kernels</subject><subject>Least squares method</subject><subject>Marketing</subject><subject>Regression</subject><subject>Standard error</subject><subject>Statistics</subject><issn>1816-2711</issn><issn>2220-5810</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkD1PwzAQhi0EEhV0ZY6YWBLsc_yRsSqFIhXBALPlJLbkksYhdiv13-O0TEynOz26e-9B6I7ggkgixeOwDX4sDtRBwdkFmgEAzpkk-BLNEsFzEIRco3kIrsbAK0EYiBlaLVo9RHcw2SpEt9PR-T7zNlubaEYfGtPqNG-yN9-bY_ZkdrpvU9OabqI-9LcLUfe36MrqLpj5X71BX8-rz-U637y_vC4Xm7xJF2PekqoVVDeWsdJyQTHDthYlE03NNYMaV2AaWYsa08qCLkFyoNYyIbHgRgO9QQ_nvcPof_YmRLVzKWPX6d74fVCECwKSMTmh9__Qrd-PfUqnKsAlkLKcoOIMNenXMBqrhjFJGI-KYHXyqk5e1eRVcUZ_AXvta6s</recordid><startdate>20070701</startdate><enddate>20070701</enddate><creator>Aslam, Muhammad</creator><creator>Pasha, G R</creator><general>University of the Punjab, College of Statistical & Actuarial Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20070701</creationdate><title>Adaptive Estimation of Heteroscedastic Money Demand Model of Pakistan</title><author>Aslam, Muhammad ; Pasha, G R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c269t-d19d73acf554f673050fb7457cb6a52b092ec8b7b039f2a428623ff578076ea23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Demand</topic><topic>Estimators</topic><topic>Kernels</topic><topic>Least squares method</topic><topic>Marketing</topic><topic>Regression</topic><topic>Standard error</topic><topic>Statistics</topic><toplevel>online_resources</toplevel><creatorcontrib>Aslam, Muhammad</creatorcontrib><creatorcontrib>Pasha, G R</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Pakistan journal of statistics and operation research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aslam, Muhammad</au><au>Pasha, G R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Estimation of Heteroscedastic Money Demand Model of Pakistan</atitle><jtitle>Pakistan journal of statistics and operation research</jtitle><date>2007-07-01</date><risdate>2007</risdate><volume>3</volume><issue>2</issue><spage>109</spage><pages>109-</pages><issn>1816-2711</issn><eissn>2220-5810</eissn><abstract>For the problem of estimation of Money demand model of Pakistan, money supply (M1) shows heteroscedasticity of the unknown form. For estimation of such model we compare two adaptive estimators with ordinary least squares estimator and show the attractive performance of the adaptive estimators, namely, nonparametric kernel estimator and nearest neighbour regression estimator. These comparisons are made on the basis standard errors of the estimated coefficients, standard error of regression, Akaike Information Criteria (AIC) value, and the Durban-Watson statistic for autocorrelation. We further show that nearest neighbour regression estimator performs better when comparing with the other nonparametric kernel estimator.</abstract><cop>Lahore</cop><pub>University of the Punjab, College of Statistical & Actuarial Science</pub><doi>10.18187/pjsor.v3i2.65</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1816-2711 |
ispartof | Pakistan journal of statistics and operation research, 2007-07, Vol.3 (2), p.109 |
issn | 1816-2711 2220-5810 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671285582 |
source | IngentaConnect Journals; ProQuest - Publicly Available Content Database |
subjects | Demand Estimators Kernels Least squares method Marketing Regression Standard error Statistics |
title | Adaptive Estimation of Heteroscedastic Money Demand Model of Pakistan |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A36%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Estimation%20of%20Heteroscedastic%20Money%20Demand%20Model%20of%20Pakistan&rft.jtitle=Pakistan%20journal%20of%20statistics%20and%20operation%20research&rft.au=Aslam,%20Muhammad&rft.date=2007-07-01&rft.volume=3&rft.issue=2&rft.spage=109&rft.pages=109-&rft.issn=1816-2711&rft.eissn=2220-5810&rft_id=info:doi/10.18187/pjsor.v3i2.65&rft_dat=%3Cproquest_cross%3E1671285582%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c269t-d19d73acf554f673050fb7457cb6a52b092ec8b7b039f2a428623ff578076ea23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=920421442&rft_id=info:pmid/&rfr_iscdi=true |