Loading…

Application of infrared thermography to structural integrity evaluation of steel bridges

A new remote nondestructive evaluation technique based on thermoelastic temperature measurement by infrared thermography was developed for the evaluation of fatigue cracks propagating from welded joints in steel bridges. Fatigue cracks were detected from localized thermoelastic temperature changes a...

Full description

Saved in:
Bibliographic Details
Published in:Journal of modern optics 2010-10, Vol.57 (18), p.1738-1746
Main Authors: Sakagami, Takahide, Izumi, Yui, Kubo, Shiro
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A new remote nondestructive evaluation technique based on thermoelastic temperature measurement by infrared thermography was developed for the evaluation of fatigue cracks propagating from welded joints in steel bridges. Fatigue cracks were detected from localized thermoelastic temperature changes at crack tips due to stress singularities generated by wheel loading from traffic on a bridge. A self-reference lock-in data-processing technique was developed to improve the signal-to-noise ratio of the thermal images obtained in the crack detection process. Thermoelastic stress analyses in the vicinity of crack tips were carried out after the crack detection process by self-reference lock-in thermography. The stress distribution under wheel loading by traffic was measured by infrared thermography. Stress intensity factors were directly evaluated from the measured stress distribution. It was found that these fracture mechanics parameters can be evaluated with reasonable accuracy by the proposed technique, enabling the assessment of structural integrity based on the evaluated fracture mechanics parameters.
ISSN:0950-0340
1362-3044
DOI:10.1080/09500340.2010.511289