Loading…

Stochastic evolution of 2D crystals

We study a crystalline version of the modified Stefan problem in the plane. The feature of our approach is that, we consider a model with stochastic perturbations and assume the interfacial curve to be a polygon. The existence of solution to our stochastic system is established. Galerkin's meth...

Full description

Saved in:
Bibliographic Details
Published in:Applied mathematics and computation 2010-03, Vol.216 (1), p.205-212
Main Authors: DUDZINSKI, Marcin, GORKA, Przemysław
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c308t-f9831f8dae6b7fd63dc613cf3901b162e606732ea31cb3599e4ced2fa2c4ae363
cites cdi_FETCH-LOGICAL-c308t-f9831f8dae6b7fd63dc613cf3901b162e606732ea31cb3599e4ced2fa2c4ae363
container_end_page 212
container_issue 1
container_start_page 205
container_title Applied mathematics and computation
container_volume 216
creator DUDZINSKI, Marcin
GORKA, Przemysław
description We study a crystalline version of the modified Stefan problem in the plane. The feature of our approach is that, we consider a model with stochastic perturbations and assume the interfacial curve to be a polygon. The existence of solution to our stochastic system is established. Galerkin's method is one of the main tools used in the proof of our assertion.
doi_str_mv 10.1016/j.amc.2010.01.035
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671289661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671289661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-f9831f8dae6b7fd63dc613cf3901b162e606732ea31cb3599e4ced2fa2c4ae363</originalsourceid><addsrcrecordid>eNo9kE1Lw0AURQdRsFZ_gLuACG4S35uXTDJLqZ9QcKGuh-nLDKaknTqTCv33prS4uly49yyOENcIBQKq-2VhV1xIGDtgAVSdiAk2NeWVKvWpmABolRMAnYuLlJYAUCssJ-LmYwj8bdPQceZ-Q78durDOgs_kY8Zxlwbbp0tx5sdwV8eciq_np8_Zaz5_f3mbPcxzJmiG3OuG0DetdWpR-1ZRywqJPWnABSrpFKiapLOEvKBKa1eya6W3kkvrSNFU3B24mxh-ti4NZtUldn1v1y5sk0FVo2y0GqlTgYcpx5BSdN5sYreycWcQzF6IWZpRiNkLMYBmFDJ-bo94m9j2Pto1d-n_KGWFuiZNfwbHYC4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671289661</pqid></control><display><type>article</type><title>Stochastic evolution of 2D crystals</title><source>Backfile Package - Computer Science (Legacy) [YCS]</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>DUDZINSKI, Marcin ; GORKA, Przemysław</creator><creatorcontrib>DUDZINSKI, Marcin ; GORKA, Przemysław</creatorcontrib><description>We study a crystalline version of the modified Stefan problem in the plane. The feature of our approach is that, we consider a model with stochastic perturbations and assume the interfacial curve to be a polygon. The existence of solution to our stochastic system is established. Galerkin's method is one of the main tools used in the proof of our assertion.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2010.01.035</identifier><identifier>CODEN: AMHCBQ</identifier><language>eng</language><publisher>Amsterdam: Elsevier</publisher><subject>Calculus of variations and optimal control ; Crystal structure ; Evolution ; Exact sciences and technology ; Galerkin methods ; Geometry ; Global analysis, analysis on manifolds ; Mathematical analysis ; Mathematical models ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Perturbation methods ; Sciences and techniques of general use ; Stochastic systems ; Stochasticity ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><ispartof>Applied mathematics and computation, 2010-03, Vol.216 (1), p.205-212</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c308t-f9831f8dae6b7fd63dc613cf3901b162e606732ea31cb3599e4ced2fa2c4ae363</citedby><cites>FETCH-LOGICAL-c308t-f9831f8dae6b7fd63dc613cf3901b162e606732ea31cb3599e4ced2fa2c4ae363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22519739$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>DUDZINSKI, Marcin</creatorcontrib><creatorcontrib>GORKA, Przemysław</creatorcontrib><title>Stochastic evolution of 2D crystals</title><title>Applied mathematics and computation</title><description>We study a crystalline version of the modified Stefan problem in the plane. The feature of our approach is that, we consider a model with stochastic perturbations and assume the interfacial curve to be a polygon. The existence of solution to our stochastic system is established. Galerkin's method is one of the main tools used in the proof of our assertion.</description><subject>Calculus of variations and optimal control</subject><subject>Crystal structure</subject><subject>Evolution</subject><subject>Exact sciences and technology</subject><subject>Galerkin methods</subject><subject>Geometry</subject><subject>Global analysis, analysis on manifolds</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Perturbation methods</subject><subject>Sciences and techniques of general use</subject><subject>Stochastic systems</subject><subject>Stochasticity</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AURQdRsFZ_gLuACG4S35uXTDJLqZ9QcKGuh-nLDKaknTqTCv33prS4uly49yyOENcIBQKq-2VhV1xIGDtgAVSdiAk2NeWVKvWpmABolRMAnYuLlJYAUCssJ-LmYwj8bdPQceZ-Q78durDOgs_kY8Zxlwbbp0tx5sdwV8eciq_np8_Zaz5_f3mbPcxzJmiG3OuG0DetdWpR-1ZRywqJPWnABSrpFKiapLOEvKBKa1eya6W3kkvrSNFU3B24mxh-ti4NZtUldn1v1y5sk0FVo2y0GqlTgYcpx5BSdN5sYreycWcQzF6IWZpRiNkLMYBmFDJ-bo94m9j2Pto1d-n_KGWFuiZNfwbHYC4</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>DUDZINSKI, Marcin</creator><creator>GORKA, Przemysław</creator><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100301</creationdate><title>Stochastic evolution of 2D crystals</title><author>DUDZINSKI, Marcin ; GORKA, Przemysław</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-f9831f8dae6b7fd63dc613cf3901b162e606732ea31cb3599e4ced2fa2c4ae363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Calculus of variations and optimal control</topic><topic>Crystal structure</topic><topic>Evolution</topic><topic>Exact sciences and technology</topic><topic>Galerkin methods</topic><topic>Geometry</topic><topic>Global analysis, analysis on manifolds</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Perturbation methods</topic><topic>Sciences and techniques of general use</topic><topic>Stochastic systems</topic><topic>Stochasticity</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DUDZINSKI, Marcin</creatorcontrib><creatorcontrib>GORKA, Przemysław</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DUDZINSKI, Marcin</au><au>GORKA, Przemysław</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic evolution of 2D crystals</atitle><jtitle>Applied mathematics and computation</jtitle><date>2010-03-01</date><risdate>2010</risdate><volume>216</volume><issue>1</issue><spage>205</spage><epage>212</epage><pages>205-212</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><coden>AMHCBQ</coden><abstract>We study a crystalline version of the modified Stefan problem in the plane. The feature of our approach is that, we consider a model with stochastic perturbations and assume the interfacial curve to be a polygon. The existence of solution to our stochastic system is established. Galerkin's method is one of the main tools used in the proof of our assertion.</abstract><cop>Amsterdam</cop><pub>Elsevier</pub><doi>10.1016/j.amc.2010.01.035</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0096-3003
ispartof Applied mathematics and computation, 2010-03, Vol.216 (1), p.205-212
issn 0096-3003
1873-5649
language eng
recordid cdi_proquest_miscellaneous_1671289661
source Backfile Package - Computer Science (Legacy) [YCS]; Backfile Package - Mathematics (Legacy) [YMT]; Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)
subjects Calculus of variations and optimal control
Crystal structure
Evolution
Exact sciences and technology
Galerkin methods
Geometry
Global analysis, analysis on manifolds
Mathematical analysis
Mathematical models
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Perturbation methods
Sciences and techniques of general use
Stochastic systems
Stochasticity
Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds
title Stochastic evolution of 2D crystals
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T16%3A27%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20evolution%20of%202D%20crystals&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=DUDZINSKI,%20Marcin&rft.date=2010-03-01&rft.volume=216&rft.issue=1&rft.spage=205&rft.epage=212&rft.pages=205-212&rft.issn=0096-3003&rft.eissn=1873-5649&rft.coden=AMHCBQ&rft_id=info:doi/10.1016/j.amc.2010.01.035&rft_dat=%3Cproquest_cross%3E1671289661%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c308t-f9831f8dae6b7fd63dc613cf3901b162e606732ea31cb3599e4ced2fa2c4ae363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671289661&rft_id=info:pmid/&rfr_iscdi=true