Loading…
Stochastic evolution of 2D crystals
We study a crystalline version of the modified Stefan problem in the plane. The feature of our approach is that, we consider a model with stochastic perturbations and assume the interfacial curve to be a polygon. The existence of solution to our stochastic system is established. Galerkin's meth...
Saved in:
Published in: | Applied mathematics and computation 2010-03, Vol.216 (1), p.205-212 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c308t-f9831f8dae6b7fd63dc613cf3901b162e606732ea31cb3599e4ced2fa2c4ae363 |
---|---|
cites | cdi_FETCH-LOGICAL-c308t-f9831f8dae6b7fd63dc613cf3901b162e606732ea31cb3599e4ced2fa2c4ae363 |
container_end_page | 212 |
container_issue | 1 |
container_start_page | 205 |
container_title | Applied mathematics and computation |
container_volume | 216 |
creator | DUDZINSKI, Marcin GORKA, Przemysław |
description | We study a crystalline version of the modified Stefan problem in the plane. The feature of our approach is that, we consider a model with stochastic perturbations and assume the interfacial curve to be a polygon. The existence of solution to our stochastic system is established. Galerkin's method is one of the main tools used in the proof of our assertion. |
doi_str_mv | 10.1016/j.amc.2010.01.035 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671289661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671289661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-f9831f8dae6b7fd63dc613cf3901b162e606732ea31cb3599e4ced2fa2c4ae363</originalsourceid><addsrcrecordid>eNo9kE1Lw0AURQdRsFZ_gLuACG4S35uXTDJLqZ9QcKGuh-nLDKaknTqTCv33prS4uly49yyOENcIBQKq-2VhV1xIGDtgAVSdiAk2NeWVKvWpmABolRMAnYuLlJYAUCssJ-LmYwj8bdPQceZ-Q78durDOgs_kY8Zxlwbbp0tx5sdwV8eciq_np8_Zaz5_f3mbPcxzJmiG3OuG0DetdWpR-1ZRywqJPWnABSrpFKiapLOEvKBKa1eya6W3kkvrSNFU3B24mxh-ti4NZtUldn1v1y5sk0FVo2y0GqlTgYcpx5BSdN5sYreycWcQzF6IWZpRiNkLMYBmFDJ-bo94m9j2Pto1d-n_KGWFuiZNfwbHYC4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671289661</pqid></control><display><type>article</type><title>Stochastic evolution of 2D crystals</title><source>Backfile Package - Computer Science (Legacy) [YCS]</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>DUDZINSKI, Marcin ; GORKA, Przemysław</creator><creatorcontrib>DUDZINSKI, Marcin ; GORKA, Przemysław</creatorcontrib><description>We study a crystalline version of the modified Stefan problem in the plane. The feature of our approach is that, we consider a model with stochastic perturbations and assume the interfacial curve to be a polygon. The existence of solution to our stochastic system is established. Galerkin's method is one of the main tools used in the proof of our assertion.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2010.01.035</identifier><identifier>CODEN: AMHCBQ</identifier><language>eng</language><publisher>Amsterdam: Elsevier</publisher><subject>Calculus of variations and optimal control ; Crystal structure ; Evolution ; Exact sciences and technology ; Galerkin methods ; Geometry ; Global analysis, analysis on manifolds ; Mathematical analysis ; Mathematical models ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Perturbation methods ; Sciences and techniques of general use ; Stochastic systems ; Stochasticity ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><ispartof>Applied mathematics and computation, 2010-03, Vol.216 (1), p.205-212</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c308t-f9831f8dae6b7fd63dc613cf3901b162e606732ea31cb3599e4ced2fa2c4ae363</citedby><cites>FETCH-LOGICAL-c308t-f9831f8dae6b7fd63dc613cf3901b162e606732ea31cb3599e4ced2fa2c4ae363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22519739$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>DUDZINSKI, Marcin</creatorcontrib><creatorcontrib>GORKA, Przemysław</creatorcontrib><title>Stochastic evolution of 2D crystals</title><title>Applied mathematics and computation</title><description>We study a crystalline version of the modified Stefan problem in the plane. The feature of our approach is that, we consider a model with stochastic perturbations and assume the interfacial curve to be a polygon. The existence of solution to our stochastic system is established. Galerkin's method is one of the main tools used in the proof of our assertion.</description><subject>Calculus of variations and optimal control</subject><subject>Crystal structure</subject><subject>Evolution</subject><subject>Exact sciences and technology</subject><subject>Galerkin methods</subject><subject>Geometry</subject><subject>Global analysis, analysis on manifolds</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Perturbation methods</subject><subject>Sciences and techniques of general use</subject><subject>Stochastic systems</subject><subject>Stochasticity</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AURQdRsFZ_gLuACG4S35uXTDJLqZ9QcKGuh-nLDKaknTqTCv33prS4uly49yyOENcIBQKq-2VhV1xIGDtgAVSdiAk2NeWVKvWpmABolRMAnYuLlJYAUCssJ-LmYwj8bdPQceZ-Q78durDOgs_kY8Zxlwbbp0tx5sdwV8eciq_np8_Zaz5_f3mbPcxzJmiG3OuG0DetdWpR-1ZRywqJPWnABSrpFKiapLOEvKBKa1eya6W3kkvrSNFU3B24mxh-ti4NZtUldn1v1y5sk0FVo2y0GqlTgYcpx5BSdN5sYreycWcQzF6IWZpRiNkLMYBmFDJ-bo94m9j2Pto1d-n_KGWFuiZNfwbHYC4</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>DUDZINSKI, Marcin</creator><creator>GORKA, Przemysław</creator><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100301</creationdate><title>Stochastic evolution of 2D crystals</title><author>DUDZINSKI, Marcin ; GORKA, Przemysław</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-f9831f8dae6b7fd63dc613cf3901b162e606732ea31cb3599e4ced2fa2c4ae363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Calculus of variations and optimal control</topic><topic>Crystal structure</topic><topic>Evolution</topic><topic>Exact sciences and technology</topic><topic>Galerkin methods</topic><topic>Geometry</topic><topic>Global analysis, analysis on manifolds</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Perturbation methods</topic><topic>Sciences and techniques of general use</topic><topic>Stochastic systems</topic><topic>Stochasticity</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DUDZINSKI, Marcin</creatorcontrib><creatorcontrib>GORKA, Przemysław</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DUDZINSKI, Marcin</au><au>GORKA, Przemysław</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic evolution of 2D crystals</atitle><jtitle>Applied mathematics and computation</jtitle><date>2010-03-01</date><risdate>2010</risdate><volume>216</volume><issue>1</issue><spage>205</spage><epage>212</epage><pages>205-212</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><coden>AMHCBQ</coden><abstract>We study a crystalline version of the modified Stefan problem in the plane. The feature of our approach is that, we consider a model with stochastic perturbations and assume the interfacial curve to be a polygon. The existence of solution to our stochastic system is established. Galerkin's method is one of the main tools used in the proof of our assertion.</abstract><cop>Amsterdam</cop><pub>Elsevier</pub><doi>10.1016/j.amc.2010.01.035</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0096-3003 |
ispartof | Applied mathematics and computation, 2010-03, Vol.216 (1), p.205-212 |
issn | 0096-3003 1873-5649 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671289661 |
source | Backfile Package - Computer Science (Legacy) [YCS]; Backfile Package - Mathematics (Legacy) [YMT]; Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list) |
subjects | Calculus of variations and optimal control Crystal structure Evolution Exact sciences and technology Galerkin methods Geometry Global analysis, analysis on manifolds Mathematical analysis Mathematical models Mathematics Numerical analysis Numerical analysis. Scientific computation Perturbation methods Sciences and techniques of general use Stochastic systems Stochasticity Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds |
title | Stochastic evolution of 2D crystals |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T16%3A27%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20evolution%20of%202D%20crystals&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=DUDZINSKI,%20Marcin&rft.date=2010-03-01&rft.volume=216&rft.issue=1&rft.spage=205&rft.epage=212&rft.pages=205-212&rft.issn=0096-3003&rft.eissn=1873-5649&rft.coden=AMHCBQ&rft_id=info:doi/10.1016/j.amc.2010.01.035&rft_dat=%3Cproquest_cross%3E1671289661%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c308t-f9831f8dae6b7fd63dc613cf3901b162e606732ea31cb3599e4ced2fa2c4ae363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671289661&rft_id=info:pmid/&rfr_iscdi=true |