Loading…

A computer-aided diagnostic system to characterize CT focal liver lesions: design and optimization of a neural network classifier

In this paper, a computer-aided diagnostic (CAD) system for the classification of hepatic lesions from computed tomography (CT) images is presented. Regions of interest (ROIs) taken from nonenhanced CT images of normal liver, hepatic cysts, hemangiomas, and hepatocellular carcinomas have been used a...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of biomedical and health informatics 2003-09, Vol.7 (3), p.153-162
Main Authors: Gletsos, M., Mougiakakou, S.G., Matsopoulos, G.K., Nikita, K.S., Nikita, A.S., Kelekis, D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c551t-4ddedb311396461f9e6efc82d808027c16c4f288dcfb0741f7f62bb5a3e8755c3
cites cdi_FETCH-LOGICAL-c551t-4ddedb311396461f9e6efc82d808027c16c4f288dcfb0741f7f62bb5a3e8755c3
container_end_page 162
container_issue 3
container_start_page 153
container_title IEEE journal of biomedical and health informatics
container_volume 7
creator Gletsos, M.
Mougiakakou, S.G.
Matsopoulos, G.K.
Nikita, K.S.
Nikita, A.S.
Kelekis, D.
description In this paper, a computer-aided diagnostic (CAD) system for the classification of hepatic lesions from computed tomography (CT) images is presented. Regions of interest (ROIs) taken from nonenhanced CT images of normal liver, hepatic cysts, hemangiomas, and hepatocellular carcinomas have been used as input to the system. The proposed system consists of two modules: the feature extraction and the classification modules. The feature extraction module calculates the average gray level and 48 texture characteristics, which are derived from the spatial gray-level co-occurrence matrices, obtained from the ROIs. The classifier module consists of three sequentially placed feed-forward neural networks (NNs). The first NN classifies into normal or pathological liver regions. The pathological liver regions are characterized by the second NN as cyst or "other disease". The third NN classifies "other disease" into hemangioma or hepatocellular carcinoma. Three feature selection techniques have been applied to each individual NN: the sequential forward selection, the sequential floating forward selection, and a genetic algorithm for feature selection. The comparative study of the above dimensionality reduction methods shows that genetic algorithms result in lower dimension feature vectors and improved classification performance.
doi_str_mv 10.1109/TITB.2003.813793
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671291993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1229853</ieee_id><sourcerecordid>883046980</sourcerecordid><originalsourceid>FETCH-LOGICAL-c551t-4ddedb311396461f9e6efc82d808027c16c4f288dcfb0741f7f62bb5a3e8755c3</originalsourceid><addsrcrecordid>eNqFks9rFTEQxxex2Fq9C4IED9rLPjPJ5pe3-rBaKHh5npdsdlJTdzfPZFdpb_7n5vEeFHqopxkyn-8whE9VvQK6AqDmw-Zy82nFKOUrDVwZ_qQ6ASF0XV7Y09JTbWqlFBxXz3O-oRQaAfxZdbyrWjF9Uv09Jy6O22XGVNvQY0_6YK-nmOfgSL7NM45kjsT9sMm6AoU7JOsN8dHZgQzhNyYyYA5xyh9JX5rridipJ3E7hzHc2blMSPTEkgmXVCITzn9i-kncYHMOPmB6UR15O2R8eain1feLz5v11_rq25fL9flV7YSAuW76clzHAbiRjQRvUKJ3mvWaasqUA-kaz7Tune-oasArL1nXCctRKyEcP63e7_duU_y1YJ7bMWSHw2AnjEtutea0kUbTQr57lFRCMS6V_C_INGMgQRTw7FEQpAJmwBhe0LcP0Ju4pKn8TLmwYdpIrQpE95BLMeeEvt2mMNp02wJtd2a0OzPanRnt3owSeXPYu3Qj9veBgwoFeL0HAiLejxkzWnD-D1qGvUI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884289687</pqid></control><display><type>article</type><title>A computer-aided diagnostic system to characterize CT focal liver lesions: design and optimization of a neural network classifier</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Gletsos, M. ; Mougiakakou, S.G. ; Matsopoulos, G.K. ; Nikita, K.S. ; Nikita, A.S. ; Kelekis, D.</creator><creatorcontrib>Gletsos, M. ; Mougiakakou, S.G. ; Matsopoulos, G.K. ; Nikita, K.S. ; Nikita, A.S. ; Kelekis, D.</creatorcontrib><description>In this paper, a computer-aided diagnostic (CAD) system for the classification of hepatic lesions from computed tomography (CT) images is presented. Regions of interest (ROIs) taken from nonenhanced CT images of normal liver, hepatic cysts, hemangiomas, and hepatocellular carcinomas have been used as input to the system. The proposed system consists of two modules: the feature extraction and the classification modules. The feature extraction module calculates the average gray level and 48 texture characteristics, which are derived from the spatial gray-level co-occurrence matrices, obtained from the ROIs. The classifier module consists of three sequentially placed feed-forward neural networks (NNs). The first NN classifies into normal or pathological liver regions. The pathological liver regions are characterized by the second NN as cyst or "other disease". The third NN classifies "other disease" into hemangioma or hepatocellular carcinoma. Three feature selection techniques have been applied to each individual NN: the sequential forward selection, the sequential floating forward selection, and a genetic algorithm for feature selection. The comparative study of the above dimensionality reduction methods shows that genetic algorithms result in lower dimension feature vectors and improved classification performance.</description><identifier>ISSN: 1089-7771</identifier><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 1558-0032</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/TITB.2003.813793</identifier><identifier>PMID: 14518728</identifier><identifier>CODEN: ITIBFX</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Carcinoma, Hepatocellular - diagnostic imaging ; Carcinoma, Hepatocellular - pathology ; Classification ; Computed tomography ; Computer networks ; Cysts ; Cysts - diagnostic imaging ; Cysts - pathology ; Design automation ; Design optimization ; Feature extraction ; Genetic algorithms ; Hemangioma - diagnostic imaging ; Hemangioma - pathology ; Humans ; Lesions ; Liver ; Liver - diagnostic imaging ; Liver diseases ; Liver Neoplasms - diagnostic imaging ; Liver Neoplasms - pathology ; Mathematical analysis ; Modules ; Neural networks ; Neural Networks (Computer) ; Pathology ; Pattern Recognition, Automated ; Radiographic Image Enhancement - methods ; Radiographic Image Interpretation, Computer-Assisted - methods ; Reproducibility of Results ; Sensitivity and Specificity ; Studies ; Texture ; Tomography, X-Ray Computed - methods</subject><ispartof>IEEE journal of biomedical and health informatics, 2003-09, Vol.7 (3), p.153-162</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c551t-4ddedb311396461f9e6efc82d808027c16c4f288dcfb0741f7f62bb5a3e8755c3</citedby><cites>FETCH-LOGICAL-c551t-4ddedb311396461f9e6efc82d808027c16c4f288dcfb0741f7f62bb5a3e8755c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1229853$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14518728$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gletsos, M.</creatorcontrib><creatorcontrib>Mougiakakou, S.G.</creatorcontrib><creatorcontrib>Matsopoulos, G.K.</creatorcontrib><creatorcontrib>Nikita, K.S.</creatorcontrib><creatorcontrib>Nikita, A.S.</creatorcontrib><creatorcontrib>Kelekis, D.</creatorcontrib><title>A computer-aided diagnostic system to characterize CT focal liver lesions: design and optimization of a neural network classifier</title><title>IEEE journal of biomedical and health informatics</title><addtitle>TITB</addtitle><addtitle>IEEE Trans Inf Technol Biomed</addtitle><description>In this paper, a computer-aided diagnostic (CAD) system for the classification of hepatic lesions from computed tomography (CT) images is presented. Regions of interest (ROIs) taken from nonenhanced CT images of normal liver, hepatic cysts, hemangiomas, and hepatocellular carcinomas have been used as input to the system. The proposed system consists of two modules: the feature extraction and the classification modules. The feature extraction module calculates the average gray level and 48 texture characteristics, which are derived from the spatial gray-level co-occurrence matrices, obtained from the ROIs. The classifier module consists of three sequentially placed feed-forward neural networks (NNs). The first NN classifies into normal or pathological liver regions. The pathological liver regions are characterized by the second NN as cyst or "other disease". The third NN classifies "other disease" into hemangioma or hepatocellular carcinoma. Three feature selection techniques have been applied to each individual NN: the sequential forward selection, the sequential floating forward selection, and a genetic algorithm for feature selection. The comparative study of the above dimensionality reduction methods shows that genetic algorithms result in lower dimension feature vectors and improved classification performance.</description><subject>Algorithms</subject><subject>Carcinoma, Hepatocellular - diagnostic imaging</subject><subject>Carcinoma, Hepatocellular - pathology</subject><subject>Classification</subject><subject>Computed tomography</subject><subject>Computer networks</subject><subject>Cysts</subject><subject>Cysts - diagnostic imaging</subject><subject>Cysts - pathology</subject><subject>Design automation</subject><subject>Design optimization</subject><subject>Feature extraction</subject><subject>Genetic algorithms</subject><subject>Hemangioma - diagnostic imaging</subject><subject>Hemangioma - pathology</subject><subject>Humans</subject><subject>Lesions</subject><subject>Liver</subject><subject>Liver - diagnostic imaging</subject><subject>Liver diseases</subject><subject>Liver Neoplasms - diagnostic imaging</subject><subject>Liver Neoplasms - pathology</subject><subject>Mathematical analysis</subject><subject>Modules</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Pathology</subject><subject>Pattern Recognition, Automated</subject><subject>Radiographic Image Enhancement - methods</subject><subject>Radiographic Image Interpretation, Computer-Assisted - methods</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Studies</subject><subject>Texture</subject><subject>Tomography, X-Ray Computed - methods</subject><issn>1089-7771</issn><issn>2168-2194</issn><issn>1558-0032</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFks9rFTEQxxex2Fq9C4IED9rLPjPJ5pe3-rBaKHh5npdsdlJTdzfPZFdpb_7n5vEeFHqopxkyn-8whE9VvQK6AqDmw-Zy82nFKOUrDVwZ_qQ6ASF0XV7Y09JTbWqlFBxXz3O-oRQaAfxZdbyrWjF9Uv09Jy6O22XGVNvQY0_6YK-nmOfgSL7NM45kjsT9sMm6AoU7JOsN8dHZgQzhNyYyYA5xyh9JX5rridipJ3E7hzHc2blMSPTEkgmXVCITzn9i-kncYHMOPmB6UR15O2R8eain1feLz5v11_rq25fL9flV7YSAuW76clzHAbiRjQRvUKJ3mvWaasqUA-kaz7Tune-oasArL1nXCctRKyEcP63e7_duU_y1YJ7bMWSHw2AnjEtutea0kUbTQr57lFRCMS6V_C_INGMgQRTw7FEQpAJmwBhe0LcP0Ju4pKn8TLmwYdpIrQpE95BLMeeEvt2mMNp02wJtd2a0OzPanRnt3owSeXPYu3Qj9veBgwoFeL0HAiLejxkzWnD-D1qGvUI</recordid><startdate>20030901</startdate><enddate>20030901</enddate><creator>Gletsos, M.</creator><creator>Mougiakakou, S.G.</creator><creator>Matsopoulos, G.K.</creator><creator>Nikita, K.S.</creator><creator>Nikita, A.S.</creator><creator>Kelekis, D.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20030901</creationdate><title>A computer-aided diagnostic system to characterize CT focal liver lesions: design and optimization of a neural network classifier</title><author>Gletsos, M. ; Mougiakakou, S.G. ; Matsopoulos, G.K. ; Nikita, K.S. ; Nikita, A.S. ; Kelekis, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c551t-4ddedb311396461f9e6efc82d808027c16c4f288dcfb0741f7f62bb5a3e8755c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithms</topic><topic>Carcinoma, Hepatocellular - diagnostic imaging</topic><topic>Carcinoma, Hepatocellular - pathology</topic><topic>Classification</topic><topic>Computed tomography</topic><topic>Computer networks</topic><topic>Cysts</topic><topic>Cysts - diagnostic imaging</topic><topic>Cysts - pathology</topic><topic>Design automation</topic><topic>Design optimization</topic><topic>Feature extraction</topic><topic>Genetic algorithms</topic><topic>Hemangioma - diagnostic imaging</topic><topic>Hemangioma - pathology</topic><topic>Humans</topic><topic>Lesions</topic><topic>Liver</topic><topic>Liver - diagnostic imaging</topic><topic>Liver diseases</topic><topic>Liver Neoplasms - diagnostic imaging</topic><topic>Liver Neoplasms - pathology</topic><topic>Mathematical analysis</topic><topic>Modules</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Pathology</topic><topic>Pattern Recognition, Automated</topic><topic>Radiographic Image Enhancement - methods</topic><topic>Radiographic Image Interpretation, Computer-Assisted - methods</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Studies</topic><topic>Texture</topic><topic>Tomography, X-Ray Computed - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gletsos, M.</creatorcontrib><creatorcontrib>Mougiakakou, S.G.</creatorcontrib><creatorcontrib>Matsopoulos, G.K.</creatorcontrib><creatorcontrib>Nikita, K.S.</creatorcontrib><creatorcontrib>Nikita, A.S.</creatorcontrib><creatorcontrib>Kelekis, D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gletsos, M.</au><au>Mougiakakou, S.G.</au><au>Matsopoulos, G.K.</au><au>Nikita, K.S.</au><au>Nikita, A.S.</au><au>Kelekis, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A computer-aided diagnostic system to characterize CT focal liver lesions: design and optimization of a neural network classifier</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>TITB</stitle><addtitle>IEEE Trans Inf Technol Biomed</addtitle><date>2003-09-01</date><risdate>2003</risdate><volume>7</volume><issue>3</issue><spage>153</spage><epage>162</epage><pages>153-162</pages><issn>1089-7771</issn><issn>2168-2194</issn><eissn>1558-0032</eissn><eissn>2168-2208</eissn><coden>ITIBFX</coden><abstract>In this paper, a computer-aided diagnostic (CAD) system for the classification of hepatic lesions from computed tomography (CT) images is presented. Regions of interest (ROIs) taken from nonenhanced CT images of normal liver, hepatic cysts, hemangiomas, and hepatocellular carcinomas have been used as input to the system. The proposed system consists of two modules: the feature extraction and the classification modules. The feature extraction module calculates the average gray level and 48 texture characteristics, which are derived from the spatial gray-level co-occurrence matrices, obtained from the ROIs. The classifier module consists of three sequentially placed feed-forward neural networks (NNs). The first NN classifies into normal or pathological liver regions. The pathological liver regions are characterized by the second NN as cyst or "other disease". The third NN classifies "other disease" into hemangioma or hepatocellular carcinoma. Three feature selection techniques have been applied to each individual NN: the sequential forward selection, the sequential floating forward selection, and a genetic algorithm for feature selection. The comparative study of the above dimensionality reduction methods shows that genetic algorithms result in lower dimension feature vectors and improved classification performance.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>14518728</pmid><doi>10.1109/TITB.2003.813793</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1089-7771
ispartof IEEE journal of biomedical and health informatics, 2003-09, Vol.7 (3), p.153-162
issn 1089-7771
2168-2194
1558-0032
2168-2208
language eng
recordid cdi_proquest_miscellaneous_1671291993
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Carcinoma, Hepatocellular - diagnostic imaging
Carcinoma, Hepatocellular - pathology
Classification
Computed tomography
Computer networks
Cysts
Cysts - diagnostic imaging
Cysts - pathology
Design automation
Design optimization
Feature extraction
Genetic algorithms
Hemangioma - diagnostic imaging
Hemangioma - pathology
Humans
Lesions
Liver
Liver - diagnostic imaging
Liver diseases
Liver Neoplasms - diagnostic imaging
Liver Neoplasms - pathology
Mathematical analysis
Modules
Neural networks
Neural Networks (Computer)
Pathology
Pattern Recognition, Automated
Radiographic Image Enhancement - methods
Radiographic Image Interpretation, Computer-Assisted - methods
Reproducibility of Results
Sensitivity and Specificity
Studies
Texture
Tomography, X-Ray Computed - methods
title A computer-aided diagnostic system to characterize CT focal liver lesions: design and optimization of a neural network classifier
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A35%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20computer-aided%20diagnostic%20system%20to%20characterize%20CT%20focal%20liver%20lesions:%20design%20and%20optimization%20of%20a%20neural%20network%20classifier&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Gletsos,%20M.&rft.date=2003-09-01&rft.volume=7&rft.issue=3&rft.spage=153&rft.epage=162&rft.pages=153-162&rft.issn=1089-7771&rft.eissn=1558-0032&rft.coden=ITIBFX&rft_id=info:doi/10.1109/TITB.2003.813793&rft_dat=%3Cproquest_pubme%3E883046980%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c551t-4ddedb311396461f9e6efc82d808027c16c4f288dcfb0741f7f62bb5a3e8755c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=884289687&rft_id=info:pmid/14518728&rft_ieee_id=1229853&rfr_iscdi=true