Loading…
A computer-aided diagnostic system to characterize CT focal liver lesions: design and optimization of a neural network classifier
In this paper, a computer-aided diagnostic (CAD) system for the classification of hepatic lesions from computed tomography (CT) images is presented. Regions of interest (ROIs) taken from nonenhanced CT images of normal liver, hepatic cysts, hemangiomas, and hepatocellular carcinomas have been used a...
Saved in:
Published in: | IEEE journal of biomedical and health informatics 2003-09, Vol.7 (3), p.153-162 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c551t-4ddedb311396461f9e6efc82d808027c16c4f288dcfb0741f7f62bb5a3e8755c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c551t-4ddedb311396461f9e6efc82d808027c16c4f288dcfb0741f7f62bb5a3e8755c3 |
container_end_page | 162 |
container_issue | 3 |
container_start_page | 153 |
container_title | IEEE journal of biomedical and health informatics |
container_volume | 7 |
creator | Gletsos, M. Mougiakakou, S.G. Matsopoulos, G.K. Nikita, K.S. Nikita, A.S. Kelekis, D. |
description | In this paper, a computer-aided diagnostic (CAD) system for the classification of hepatic lesions from computed tomography (CT) images is presented. Regions of interest (ROIs) taken from nonenhanced CT images of normal liver, hepatic cysts, hemangiomas, and hepatocellular carcinomas have been used as input to the system. The proposed system consists of two modules: the feature extraction and the classification modules. The feature extraction module calculates the average gray level and 48 texture characteristics, which are derived from the spatial gray-level co-occurrence matrices, obtained from the ROIs. The classifier module consists of three sequentially placed feed-forward neural networks (NNs). The first NN classifies into normal or pathological liver regions. The pathological liver regions are characterized by the second NN as cyst or "other disease". The third NN classifies "other disease" into hemangioma or hepatocellular carcinoma. Three feature selection techniques have been applied to each individual NN: the sequential forward selection, the sequential floating forward selection, and a genetic algorithm for feature selection. The comparative study of the above dimensionality reduction methods shows that genetic algorithms result in lower dimension feature vectors and improved classification performance. |
doi_str_mv | 10.1109/TITB.2003.813793 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671291993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1229853</ieee_id><sourcerecordid>883046980</sourcerecordid><originalsourceid>FETCH-LOGICAL-c551t-4ddedb311396461f9e6efc82d808027c16c4f288dcfb0741f7f62bb5a3e8755c3</originalsourceid><addsrcrecordid>eNqFks9rFTEQxxex2Fq9C4IED9rLPjPJ5pe3-rBaKHh5npdsdlJTdzfPZFdpb_7n5vEeFHqopxkyn-8whE9VvQK6AqDmw-Zy82nFKOUrDVwZ_qQ6ASF0XV7Y09JTbWqlFBxXz3O-oRQaAfxZdbyrWjF9Uv09Jy6O22XGVNvQY0_6YK-nmOfgSL7NM45kjsT9sMm6AoU7JOsN8dHZgQzhNyYyYA5xyh9JX5rridipJ3E7hzHc2blMSPTEkgmXVCITzn9i-kncYHMOPmB6UR15O2R8eain1feLz5v11_rq25fL9flV7YSAuW76clzHAbiRjQRvUKJ3mvWaasqUA-kaz7Tune-oasArL1nXCctRKyEcP63e7_duU_y1YJ7bMWSHw2AnjEtutea0kUbTQr57lFRCMS6V_C_INGMgQRTw7FEQpAJmwBhe0LcP0Ju4pKn8TLmwYdpIrQpE95BLMeeEvt2mMNp02wJtd2a0OzPanRnt3owSeXPYu3Qj9veBgwoFeL0HAiLejxkzWnD-D1qGvUI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884289687</pqid></control><display><type>article</type><title>A computer-aided diagnostic system to characterize CT focal liver lesions: design and optimization of a neural network classifier</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Gletsos, M. ; Mougiakakou, S.G. ; Matsopoulos, G.K. ; Nikita, K.S. ; Nikita, A.S. ; Kelekis, D.</creator><creatorcontrib>Gletsos, M. ; Mougiakakou, S.G. ; Matsopoulos, G.K. ; Nikita, K.S. ; Nikita, A.S. ; Kelekis, D.</creatorcontrib><description>In this paper, a computer-aided diagnostic (CAD) system for the classification of hepatic lesions from computed tomography (CT) images is presented. Regions of interest (ROIs) taken from nonenhanced CT images of normal liver, hepatic cysts, hemangiomas, and hepatocellular carcinomas have been used as input to the system. The proposed system consists of two modules: the feature extraction and the classification modules. The feature extraction module calculates the average gray level and 48 texture characteristics, which are derived from the spatial gray-level co-occurrence matrices, obtained from the ROIs. The classifier module consists of three sequentially placed feed-forward neural networks (NNs). The first NN classifies into normal or pathological liver regions. The pathological liver regions are characterized by the second NN as cyst or "other disease". The third NN classifies "other disease" into hemangioma or hepatocellular carcinoma. Three feature selection techniques have been applied to each individual NN: the sequential forward selection, the sequential floating forward selection, and a genetic algorithm for feature selection. The comparative study of the above dimensionality reduction methods shows that genetic algorithms result in lower dimension feature vectors and improved classification performance.</description><identifier>ISSN: 1089-7771</identifier><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 1558-0032</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/TITB.2003.813793</identifier><identifier>PMID: 14518728</identifier><identifier>CODEN: ITIBFX</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Carcinoma, Hepatocellular - diagnostic imaging ; Carcinoma, Hepatocellular - pathology ; Classification ; Computed tomography ; Computer networks ; Cysts ; Cysts - diagnostic imaging ; Cysts - pathology ; Design automation ; Design optimization ; Feature extraction ; Genetic algorithms ; Hemangioma - diagnostic imaging ; Hemangioma - pathology ; Humans ; Lesions ; Liver ; Liver - diagnostic imaging ; Liver diseases ; Liver Neoplasms - diagnostic imaging ; Liver Neoplasms - pathology ; Mathematical analysis ; Modules ; Neural networks ; Neural Networks (Computer) ; Pathology ; Pattern Recognition, Automated ; Radiographic Image Enhancement - methods ; Radiographic Image Interpretation, Computer-Assisted - methods ; Reproducibility of Results ; Sensitivity and Specificity ; Studies ; Texture ; Tomography, X-Ray Computed - methods</subject><ispartof>IEEE journal of biomedical and health informatics, 2003-09, Vol.7 (3), p.153-162</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c551t-4ddedb311396461f9e6efc82d808027c16c4f288dcfb0741f7f62bb5a3e8755c3</citedby><cites>FETCH-LOGICAL-c551t-4ddedb311396461f9e6efc82d808027c16c4f288dcfb0741f7f62bb5a3e8755c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1229853$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14518728$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gletsos, M.</creatorcontrib><creatorcontrib>Mougiakakou, S.G.</creatorcontrib><creatorcontrib>Matsopoulos, G.K.</creatorcontrib><creatorcontrib>Nikita, K.S.</creatorcontrib><creatorcontrib>Nikita, A.S.</creatorcontrib><creatorcontrib>Kelekis, D.</creatorcontrib><title>A computer-aided diagnostic system to characterize CT focal liver lesions: design and optimization of a neural network classifier</title><title>IEEE journal of biomedical and health informatics</title><addtitle>TITB</addtitle><addtitle>IEEE Trans Inf Technol Biomed</addtitle><description>In this paper, a computer-aided diagnostic (CAD) system for the classification of hepatic lesions from computed tomography (CT) images is presented. Regions of interest (ROIs) taken from nonenhanced CT images of normal liver, hepatic cysts, hemangiomas, and hepatocellular carcinomas have been used as input to the system. The proposed system consists of two modules: the feature extraction and the classification modules. The feature extraction module calculates the average gray level and 48 texture characteristics, which are derived from the spatial gray-level co-occurrence matrices, obtained from the ROIs. The classifier module consists of three sequentially placed feed-forward neural networks (NNs). The first NN classifies into normal or pathological liver regions. The pathological liver regions are characterized by the second NN as cyst or "other disease". The third NN classifies "other disease" into hemangioma or hepatocellular carcinoma. Three feature selection techniques have been applied to each individual NN: the sequential forward selection, the sequential floating forward selection, and a genetic algorithm for feature selection. The comparative study of the above dimensionality reduction methods shows that genetic algorithms result in lower dimension feature vectors and improved classification performance.</description><subject>Algorithms</subject><subject>Carcinoma, Hepatocellular - diagnostic imaging</subject><subject>Carcinoma, Hepatocellular - pathology</subject><subject>Classification</subject><subject>Computed tomography</subject><subject>Computer networks</subject><subject>Cysts</subject><subject>Cysts - diagnostic imaging</subject><subject>Cysts - pathology</subject><subject>Design automation</subject><subject>Design optimization</subject><subject>Feature extraction</subject><subject>Genetic algorithms</subject><subject>Hemangioma - diagnostic imaging</subject><subject>Hemangioma - pathology</subject><subject>Humans</subject><subject>Lesions</subject><subject>Liver</subject><subject>Liver - diagnostic imaging</subject><subject>Liver diseases</subject><subject>Liver Neoplasms - diagnostic imaging</subject><subject>Liver Neoplasms - pathology</subject><subject>Mathematical analysis</subject><subject>Modules</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Pathology</subject><subject>Pattern Recognition, Automated</subject><subject>Radiographic Image Enhancement - methods</subject><subject>Radiographic Image Interpretation, Computer-Assisted - methods</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Studies</subject><subject>Texture</subject><subject>Tomography, X-Ray Computed - methods</subject><issn>1089-7771</issn><issn>2168-2194</issn><issn>1558-0032</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFks9rFTEQxxex2Fq9C4IED9rLPjPJ5pe3-rBaKHh5npdsdlJTdzfPZFdpb_7n5vEeFHqopxkyn-8whE9VvQK6AqDmw-Zy82nFKOUrDVwZ_qQ6ASF0XV7Y09JTbWqlFBxXz3O-oRQaAfxZdbyrWjF9Uv09Jy6O22XGVNvQY0_6YK-nmOfgSL7NM45kjsT9sMm6AoU7JOsN8dHZgQzhNyYyYA5xyh9JX5rridipJ3E7hzHc2blMSPTEkgmXVCITzn9i-kncYHMOPmB6UR15O2R8eain1feLz5v11_rq25fL9flV7YSAuW76clzHAbiRjQRvUKJ3mvWaasqUA-kaz7Tune-oasArL1nXCctRKyEcP63e7_duU_y1YJ7bMWSHw2AnjEtutea0kUbTQr57lFRCMS6V_C_INGMgQRTw7FEQpAJmwBhe0LcP0Ju4pKn8TLmwYdpIrQpE95BLMeeEvt2mMNp02wJtd2a0OzPanRnt3owSeXPYu3Qj9veBgwoFeL0HAiLejxkzWnD-D1qGvUI</recordid><startdate>20030901</startdate><enddate>20030901</enddate><creator>Gletsos, M.</creator><creator>Mougiakakou, S.G.</creator><creator>Matsopoulos, G.K.</creator><creator>Nikita, K.S.</creator><creator>Nikita, A.S.</creator><creator>Kelekis, D.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20030901</creationdate><title>A computer-aided diagnostic system to characterize CT focal liver lesions: design and optimization of a neural network classifier</title><author>Gletsos, M. ; Mougiakakou, S.G. ; Matsopoulos, G.K. ; Nikita, K.S. ; Nikita, A.S. ; Kelekis, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c551t-4ddedb311396461f9e6efc82d808027c16c4f288dcfb0741f7f62bb5a3e8755c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithms</topic><topic>Carcinoma, Hepatocellular - diagnostic imaging</topic><topic>Carcinoma, Hepatocellular - pathology</topic><topic>Classification</topic><topic>Computed tomography</topic><topic>Computer networks</topic><topic>Cysts</topic><topic>Cysts - diagnostic imaging</topic><topic>Cysts - pathology</topic><topic>Design automation</topic><topic>Design optimization</topic><topic>Feature extraction</topic><topic>Genetic algorithms</topic><topic>Hemangioma - diagnostic imaging</topic><topic>Hemangioma - pathology</topic><topic>Humans</topic><topic>Lesions</topic><topic>Liver</topic><topic>Liver - diagnostic imaging</topic><topic>Liver diseases</topic><topic>Liver Neoplasms - diagnostic imaging</topic><topic>Liver Neoplasms - pathology</topic><topic>Mathematical analysis</topic><topic>Modules</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Pathology</topic><topic>Pattern Recognition, Automated</topic><topic>Radiographic Image Enhancement - methods</topic><topic>Radiographic Image Interpretation, Computer-Assisted - methods</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Studies</topic><topic>Texture</topic><topic>Tomography, X-Ray Computed - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gletsos, M.</creatorcontrib><creatorcontrib>Mougiakakou, S.G.</creatorcontrib><creatorcontrib>Matsopoulos, G.K.</creatorcontrib><creatorcontrib>Nikita, K.S.</creatorcontrib><creatorcontrib>Nikita, A.S.</creatorcontrib><creatorcontrib>Kelekis, D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gletsos, M.</au><au>Mougiakakou, S.G.</au><au>Matsopoulos, G.K.</au><au>Nikita, K.S.</au><au>Nikita, A.S.</au><au>Kelekis, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A computer-aided diagnostic system to characterize CT focal liver lesions: design and optimization of a neural network classifier</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>TITB</stitle><addtitle>IEEE Trans Inf Technol Biomed</addtitle><date>2003-09-01</date><risdate>2003</risdate><volume>7</volume><issue>3</issue><spage>153</spage><epage>162</epage><pages>153-162</pages><issn>1089-7771</issn><issn>2168-2194</issn><eissn>1558-0032</eissn><eissn>2168-2208</eissn><coden>ITIBFX</coden><abstract>In this paper, a computer-aided diagnostic (CAD) system for the classification of hepatic lesions from computed tomography (CT) images is presented. Regions of interest (ROIs) taken from nonenhanced CT images of normal liver, hepatic cysts, hemangiomas, and hepatocellular carcinomas have been used as input to the system. The proposed system consists of two modules: the feature extraction and the classification modules. The feature extraction module calculates the average gray level and 48 texture characteristics, which are derived from the spatial gray-level co-occurrence matrices, obtained from the ROIs. The classifier module consists of three sequentially placed feed-forward neural networks (NNs). The first NN classifies into normal or pathological liver regions. The pathological liver regions are characterized by the second NN as cyst or "other disease". The third NN classifies "other disease" into hemangioma or hepatocellular carcinoma. Three feature selection techniques have been applied to each individual NN: the sequential forward selection, the sequential floating forward selection, and a genetic algorithm for feature selection. The comparative study of the above dimensionality reduction methods shows that genetic algorithms result in lower dimension feature vectors and improved classification performance.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>14518728</pmid><doi>10.1109/TITB.2003.813793</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1089-7771 |
ispartof | IEEE journal of biomedical and health informatics, 2003-09, Vol.7 (3), p.153-162 |
issn | 1089-7771 2168-2194 1558-0032 2168-2208 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671291993 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Carcinoma, Hepatocellular - diagnostic imaging Carcinoma, Hepatocellular - pathology Classification Computed tomography Computer networks Cysts Cysts - diagnostic imaging Cysts - pathology Design automation Design optimization Feature extraction Genetic algorithms Hemangioma - diagnostic imaging Hemangioma - pathology Humans Lesions Liver Liver - diagnostic imaging Liver diseases Liver Neoplasms - diagnostic imaging Liver Neoplasms - pathology Mathematical analysis Modules Neural networks Neural Networks (Computer) Pathology Pattern Recognition, Automated Radiographic Image Enhancement - methods Radiographic Image Interpretation, Computer-Assisted - methods Reproducibility of Results Sensitivity and Specificity Studies Texture Tomography, X-Ray Computed - methods |
title | A computer-aided diagnostic system to characterize CT focal liver lesions: design and optimization of a neural network classifier |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A35%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20computer-aided%20diagnostic%20system%20to%20characterize%20CT%20focal%20liver%20lesions:%20design%20and%20optimization%20of%20a%20neural%20network%20classifier&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Gletsos,%20M.&rft.date=2003-09-01&rft.volume=7&rft.issue=3&rft.spage=153&rft.epage=162&rft.pages=153-162&rft.issn=1089-7771&rft.eissn=1558-0032&rft.coden=ITIBFX&rft_id=info:doi/10.1109/TITB.2003.813793&rft_dat=%3Cproquest_pubme%3E883046980%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c551t-4ddedb311396461f9e6efc82d808027c16c4f288dcfb0741f7f62bb5a3e8755c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=884289687&rft_id=info:pmid/14518728&rft_ieee_id=1229853&rfr_iscdi=true |