Loading…

A Fast Parallelized Computational Approach Based on Sparse LU Factorization for Predictions of Spatial and Time-Dependent Currents and Voltages in Full-Body Biomodels

Realistic and accurate numerical simulations of electrostimulation of tissues and full-body biomodels have been developed and implemented. Typically, whole-body systems are very complex and consist of a multitude of tissues, organs, and subcomponents with diverse properties. From an electrical stand...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on plasma science 2006-08, Vol.34 (4), p.1431-1440
Main Authors: Mishra, A., Joshi, R.P., Schoenbach, K.H., Clark, C.D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c321t-1d56581917b11098270cd14712f585b75a118279a7eab986f9ac19776e5824703
cites cdi_FETCH-LOGICAL-c321t-1d56581917b11098270cd14712f585b75a118279a7eab986f9ac19776e5824703
container_end_page 1440
container_issue 4
container_start_page 1431
container_title IEEE transactions on plasma science
container_volume 34
creator Mishra, A.
Joshi, R.P.
Schoenbach, K.H.
Clark, C.D.
description Realistic and accurate numerical simulations of electrostimulation of tissues and full-body biomodels have been developed and implemented. Typically, whole-body systems are very complex and consist of a multitude of tissues, organs, and subcomponents with diverse properties. From an electrical standpoint, these can be characterized in terms of separate conductivities and permittivities. Accuracy demands good spatial resolution; thus, the overall tissue/animal models need to be discretized into a fine-grained mesh. This can lead to a large number of grid points (especially for a three-dimensional entity) and can place prohibitive requirements of memory storage and execution times on computing machines. Here, the authors include a simple yet fast and efficient numerical implementation. It is based on LU decomposition for execution on a cluster of computers running in parallel with distributed storage of the data in a sparse format. In this paper, the details of electrical tissue representation, the fast algorithm, the relevant biomodels, and specific applications to whole-animal studies of electrostimulation are discussed
doi_str_mv 10.1109/TPS.2006.876485
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671293235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1673548</ieee_id><sourcerecordid>1671293235</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-1d56581917b11098270cd14712f585b75a118279a7eab986f9ac19776e5824703</originalsourceid><addsrcrecordid>eNpdkUGP0zAQhS0EEmXhzIGLxYlLup44ju1jW-guUiUqbZdr5CYT8MqJg-0cdn8QvxNni4TEaTQz33uy5xHyHtgagOnr0_FuXTJWr5WsKyVekBVorgvNpXhJVoxpXnAF_DV5E-MDY1AJVq7I7w3dm5jo0QTjHDr7hB3d-WGak0nWj8bRzTQFb9qfdGtiXvqR3k0mRKSH-6xtkw_26ZmlvQ_0GLCz7dJG6vsFTTabmLGjJztg8RknHDscE93NIeQan3ffvUvmB0ZqR7qfnSu2vnukW-sH36GLb8mr3riI7_7WK3K__3La3RaHbzdfd5tD0fISUgGdqIUCDfK83ESVkrUdVBLKXihxlsIA5KE2Es1Zq7rXpgUtZY1ClZVk_Ip8uvjmL_-aMaZmsLFF58yIfo4N1NlL85KLjH78D33wc8gHy5QWILlSi9_1BWqDjzFg30zBDiY8NsCa5YlNjq1ZYmsusWXFh4vCIuI_upZcVIr_AWg-k44</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195173880</pqid></control><display><type>article</type><title>A Fast Parallelized Computational Approach Based on Sparse LU Factorization for Predictions of Spatial and Time-Dependent Currents and Voltages in Full-Body Biomodels</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Mishra, A. ; Joshi, R.P. ; Schoenbach, K.H. ; Clark, C.D.</creator><creatorcontrib>Mishra, A. ; Joshi, R.P. ; Schoenbach, K.H. ; Clark, C.D.</creatorcontrib><description>Realistic and accurate numerical simulations of electrostimulation of tissues and full-body biomodels have been developed and implemented. Typically, whole-body systems are very complex and consist of a multitude of tissues, organs, and subcomponents with diverse properties. From an electrical standpoint, these can be characterized in terms of separate conductivities and permittivities. Accuracy demands good spatial resolution; thus, the overall tissue/animal models need to be discretized into a fine-grained mesh. This can lead to a large number of grid points (especially for a three-dimensional entity) and can place prohibitive requirements of memory storage and execution times on computing machines. Here, the authors include a simple yet fast and efficient numerical implementation. It is based on LU decomposition for execution on a cluster of computers running in parallel with distributed storage of the data in a sparse format. In this paper, the details of electrical tissue representation, the fast algorithm, the relevant biomodels, and specific applications to whole-animal studies of electrostimulation are discussed</description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2006.876485</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Animal structures ; Clustering algorithms ; Computation ; Computer simulation ; Concurrent computing ; Conductivity ; Demand ; Distributed computing ; Distributed currents ; Electric potential ; Electricity ; Format ; Grid computing ; LU decomposition ; Mathematical models ; Numerical analysis ; Numerical simulation ; parallel computing ; Permittivity ; Resistivity ; Spatial resolution ; tissue modeling ; Tissues ; Voltage ; whole body ; Zoology</subject><ispartof>IEEE transactions on plasma science, 2006-08, Vol.34 (4), p.1431-1440</ispartof><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-1d56581917b11098270cd14712f585b75a118279a7eab986f9ac19776e5824703</citedby><cites>FETCH-LOGICAL-c321t-1d56581917b11098270cd14712f585b75a118279a7eab986f9ac19776e5824703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1673548$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Mishra, A.</creatorcontrib><creatorcontrib>Joshi, R.P.</creatorcontrib><creatorcontrib>Schoenbach, K.H.</creatorcontrib><creatorcontrib>Clark, C.D.</creatorcontrib><title>A Fast Parallelized Computational Approach Based on Sparse LU Factorization for Predictions of Spatial and Time-Dependent Currents and Voltages in Full-Body Biomodels</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description>Realistic and accurate numerical simulations of electrostimulation of tissues and full-body biomodels have been developed and implemented. Typically, whole-body systems are very complex and consist of a multitude of tissues, organs, and subcomponents with diverse properties. From an electrical standpoint, these can be characterized in terms of separate conductivities and permittivities. Accuracy demands good spatial resolution; thus, the overall tissue/animal models need to be discretized into a fine-grained mesh. This can lead to a large number of grid points (especially for a three-dimensional entity) and can place prohibitive requirements of memory storage and execution times on computing machines. Here, the authors include a simple yet fast and efficient numerical implementation. It is based on LU decomposition for execution on a cluster of computers running in parallel with distributed storage of the data in a sparse format. In this paper, the details of electrical tissue representation, the fast algorithm, the relevant biomodels, and specific applications to whole-animal studies of electrostimulation are discussed</description><subject>Algorithms</subject><subject>Animal structures</subject><subject>Clustering algorithms</subject><subject>Computation</subject><subject>Computer simulation</subject><subject>Concurrent computing</subject><subject>Conductivity</subject><subject>Demand</subject><subject>Distributed computing</subject><subject>Distributed currents</subject><subject>Electric potential</subject><subject>Electricity</subject><subject>Format</subject><subject>Grid computing</subject><subject>LU decomposition</subject><subject>Mathematical models</subject><subject>Numerical analysis</subject><subject>Numerical simulation</subject><subject>parallel computing</subject><subject>Permittivity</subject><subject>Resistivity</subject><subject>Spatial resolution</subject><subject>tissue modeling</subject><subject>Tissues</subject><subject>Voltage</subject><subject>whole body</subject><subject>Zoology</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpdkUGP0zAQhS0EEmXhzIGLxYlLup44ju1jW-guUiUqbZdr5CYT8MqJg-0cdn8QvxNni4TEaTQz33uy5xHyHtgagOnr0_FuXTJWr5WsKyVekBVorgvNpXhJVoxpXnAF_DV5E-MDY1AJVq7I7w3dm5jo0QTjHDr7hB3d-WGak0nWj8bRzTQFb9qfdGtiXvqR3k0mRKSH-6xtkw_26ZmlvQ_0GLCz7dJG6vsFTTabmLGjJztg8RknHDscE93NIeQan3ffvUvmB0ZqR7qfnSu2vnukW-sH36GLb8mr3riI7_7WK3K__3La3RaHbzdfd5tD0fISUgGdqIUCDfK83ESVkrUdVBLKXihxlsIA5KE2Es1Zq7rXpgUtZY1ClZVk_Ip8uvjmL_-aMaZmsLFF58yIfo4N1NlL85KLjH78D33wc8gHy5QWILlSi9_1BWqDjzFg30zBDiY8NsCa5YlNjq1ZYmsusWXFh4vCIuI_upZcVIr_AWg-k44</recordid><startdate>20060801</startdate><enddate>20060801</enddate><creator>Mishra, A.</creator><creator>Joshi, R.P.</creator><creator>Schoenbach, K.H.</creator><creator>Clark, C.D.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20060801</creationdate><title>A Fast Parallelized Computational Approach Based on Sparse LU Factorization for Predictions of Spatial and Time-Dependent Currents and Voltages in Full-Body Biomodels</title><author>Mishra, A. ; Joshi, R.P. ; Schoenbach, K.H. ; Clark, C.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-1d56581917b11098270cd14712f585b75a118279a7eab986f9ac19776e5824703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Animal structures</topic><topic>Clustering algorithms</topic><topic>Computation</topic><topic>Computer simulation</topic><topic>Concurrent computing</topic><topic>Conductivity</topic><topic>Demand</topic><topic>Distributed computing</topic><topic>Distributed currents</topic><topic>Electric potential</topic><topic>Electricity</topic><topic>Format</topic><topic>Grid computing</topic><topic>LU decomposition</topic><topic>Mathematical models</topic><topic>Numerical analysis</topic><topic>Numerical simulation</topic><topic>parallel computing</topic><topic>Permittivity</topic><topic>Resistivity</topic><topic>Spatial resolution</topic><topic>tissue modeling</topic><topic>Tissues</topic><topic>Voltage</topic><topic>whole body</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mishra, A.</creatorcontrib><creatorcontrib>Joshi, R.P.</creatorcontrib><creatorcontrib>Schoenbach, K.H.</creatorcontrib><creatorcontrib>Clark, C.D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mishra, A.</au><au>Joshi, R.P.</au><au>Schoenbach, K.H.</au><au>Clark, C.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Fast Parallelized Computational Approach Based on Sparse LU Factorization for Predictions of Spatial and Time-Dependent Currents and Voltages in Full-Body Biomodels</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2006-08-01</date><risdate>2006</risdate><volume>34</volume><issue>4</issue><spage>1431</spage><epage>1440</epage><pages>1431-1440</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>Realistic and accurate numerical simulations of electrostimulation of tissues and full-body biomodels have been developed and implemented. Typically, whole-body systems are very complex and consist of a multitude of tissues, organs, and subcomponents with diverse properties. From an electrical standpoint, these can be characterized in terms of separate conductivities and permittivities. Accuracy demands good spatial resolution; thus, the overall tissue/animal models need to be discretized into a fine-grained mesh. This can lead to a large number of grid points (especially for a three-dimensional entity) and can place prohibitive requirements of memory storage and execution times on computing machines. Here, the authors include a simple yet fast and efficient numerical implementation. It is based on LU decomposition for execution on a cluster of computers running in parallel with distributed storage of the data in a sparse format. In this paper, the details of electrical tissue representation, the fast algorithm, the relevant biomodels, and specific applications to whole-animal studies of electrostimulation are discussed</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPS.2006.876485</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0093-3813
ispartof IEEE transactions on plasma science, 2006-08, Vol.34 (4), p.1431-1440
issn 0093-3813
1939-9375
language eng
recordid cdi_proquest_miscellaneous_1671293235
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Animal structures
Clustering algorithms
Computation
Computer simulation
Concurrent computing
Conductivity
Demand
Distributed computing
Distributed currents
Electric potential
Electricity
Format
Grid computing
LU decomposition
Mathematical models
Numerical analysis
Numerical simulation
parallel computing
Permittivity
Resistivity
Spatial resolution
tissue modeling
Tissues
Voltage
whole body
Zoology
title A Fast Parallelized Computational Approach Based on Sparse LU Factorization for Predictions of Spatial and Time-Dependent Currents and Voltages in Full-Body Biomodels
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A43%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Fast%20Parallelized%20Computational%20Approach%20Based%20on%20Sparse%20LU%20Factorization%20for%20Predictions%20of%20Spatial%20and%20Time-Dependent%20Currents%20and%20Voltages%20in%20Full-Body%20Biomodels&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Mishra,%20A.&rft.date=2006-08-01&rft.volume=34&rft.issue=4&rft.spage=1431&rft.epage=1440&rft.pages=1431-1440&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2006.876485&rft_dat=%3Cproquest_ieee_%3E1671293235%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c321t-1d56581917b11098270cd14712f585b75a118279a7eab986f9ac19776e5824703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=195173880&rft_id=info:pmid/&rft_ieee_id=1673548&rfr_iscdi=true