Loading…
A Fast Parallelized Computational Approach Based on Sparse LU Factorization for Predictions of Spatial and Time-Dependent Currents and Voltages in Full-Body Biomodels
Realistic and accurate numerical simulations of electrostimulation of tissues and full-body biomodels have been developed and implemented. Typically, whole-body systems are very complex and consist of a multitude of tissues, organs, and subcomponents with diverse properties. From an electrical stand...
Saved in:
Published in: | IEEE transactions on plasma science 2006-08, Vol.34 (4), p.1431-1440 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c321t-1d56581917b11098270cd14712f585b75a118279a7eab986f9ac19776e5824703 |
---|---|
cites | cdi_FETCH-LOGICAL-c321t-1d56581917b11098270cd14712f585b75a118279a7eab986f9ac19776e5824703 |
container_end_page | 1440 |
container_issue | 4 |
container_start_page | 1431 |
container_title | IEEE transactions on plasma science |
container_volume | 34 |
creator | Mishra, A. Joshi, R.P. Schoenbach, K.H. Clark, C.D. |
description | Realistic and accurate numerical simulations of electrostimulation of tissues and full-body biomodels have been developed and implemented. Typically, whole-body systems are very complex and consist of a multitude of tissues, organs, and subcomponents with diverse properties. From an electrical standpoint, these can be characterized in terms of separate conductivities and permittivities. Accuracy demands good spatial resolution; thus, the overall tissue/animal models need to be discretized into a fine-grained mesh. This can lead to a large number of grid points (especially for a three-dimensional entity) and can place prohibitive requirements of memory storage and execution times on computing machines. Here, the authors include a simple yet fast and efficient numerical implementation. It is based on LU decomposition for execution on a cluster of computers running in parallel with distributed storage of the data in a sparse format. In this paper, the details of electrical tissue representation, the fast algorithm, the relevant biomodels, and specific applications to whole-animal studies of electrostimulation are discussed |
doi_str_mv | 10.1109/TPS.2006.876485 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671293235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1673548</ieee_id><sourcerecordid>1671293235</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-1d56581917b11098270cd14712f585b75a118279a7eab986f9ac19776e5824703</originalsourceid><addsrcrecordid>eNpdkUGP0zAQhS0EEmXhzIGLxYlLup44ju1jW-guUiUqbZdr5CYT8MqJg-0cdn8QvxNni4TEaTQz33uy5xHyHtgagOnr0_FuXTJWr5WsKyVekBVorgvNpXhJVoxpXnAF_DV5E-MDY1AJVq7I7w3dm5jo0QTjHDr7hB3d-WGak0nWj8bRzTQFb9qfdGtiXvqR3k0mRKSH-6xtkw_26ZmlvQ_0GLCz7dJG6vsFTTabmLGjJztg8RknHDscE93NIeQan3ffvUvmB0ZqR7qfnSu2vnukW-sH36GLb8mr3riI7_7WK3K__3La3RaHbzdfd5tD0fISUgGdqIUCDfK83ESVkrUdVBLKXihxlsIA5KE2Es1Zq7rXpgUtZY1ClZVk_Ip8uvjmL_-aMaZmsLFF58yIfo4N1NlL85KLjH78D33wc8gHy5QWILlSi9_1BWqDjzFg30zBDiY8NsCa5YlNjq1ZYmsusWXFh4vCIuI_upZcVIr_AWg-k44</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195173880</pqid></control><display><type>article</type><title>A Fast Parallelized Computational Approach Based on Sparse LU Factorization for Predictions of Spatial and Time-Dependent Currents and Voltages in Full-Body Biomodels</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Mishra, A. ; Joshi, R.P. ; Schoenbach, K.H. ; Clark, C.D.</creator><creatorcontrib>Mishra, A. ; Joshi, R.P. ; Schoenbach, K.H. ; Clark, C.D.</creatorcontrib><description>Realistic and accurate numerical simulations of electrostimulation of tissues and full-body biomodels have been developed and implemented. Typically, whole-body systems are very complex and consist of a multitude of tissues, organs, and subcomponents with diverse properties. From an electrical standpoint, these can be characterized in terms of separate conductivities and permittivities. Accuracy demands good spatial resolution; thus, the overall tissue/animal models need to be discretized into a fine-grained mesh. This can lead to a large number of grid points (especially for a three-dimensional entity) and can place prohibitive requirements of memory storage and execution times on computing machines. Here, the authors include a simple yet fast and efficient numerical implementation. It is based on LU decomposition for execution on a cluster of computers running in parallel with distributed storage of the data in a sparse format. In this paper, the details of electrical tissue representation, the fast algorithm, the relevant biomodels, and specific applications to whole-animal studies of electrostimulation are discussed</description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2006.876485</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Animal structures ; Clustering algorithms ; Computation ; Computer simulation ; Concurrent computing ; Conductivity ; Demand ; Distributed computing ; Distributed currents ; Electric potential ; Electricity ; Format ; Grid computing ; LU decomposition ; Mathematical models ; Numerical analysis ; Numerical simulation ; parallel computing ; Permittivity ; Resistivity ; Spatial resolution ; tissue modeling ; Tissues ; Voltage ; whole body ; Zoology</subject><ispartof>IEEE transactions on plasma science, 2006-08, Vol.34 (4), p.1431-1440</ispartof><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-1d56581917b11098270cd14712f585b75a118279a7eab986f9ac19776e5824703</citedby><cites>FETCH-LOGICAL-c321t-1d56581917b11098270cd14712f585b75a118279a7eab986f9ac19776e5824703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1673548$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Mishra, A.</creatorcontrib><creatorcontrib>Joshi, R.P.</creatorcontrib><creatorcontrib>Schoenbach, K.H.</creatorcontrib><creatorcontrib>Clark, C.D.</creatorcontrib><title>A Fast Parallelized Computational Approach Based on Sparse LU Factorization for Predictions of Spatial and Time-Dependent Currents and Voltages in Full-Body Biomodels</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description>Realistic and accurate numerical simulations of electrostimulation of tissues and full-body biomodels have been developed and implemented. Typically, whole-body systems are very complex and consist of a multitude of tissues, organs, and subcomponents with diverse properties. From an electrical standpoint, these can be characterized in terms of separate conductivities and permittivities. Accuracy demands good spatial resolution; thus, the overall tissue/animal models need to be discretized into a fine-grained mesh. This can lead to a large number of grid points (especially for a three-dimensional entity) and can place prohibitive requirements of memory storage and execution times on computing machines. Here, the authors include a simple yet fast and efficient numerical implementation. It is based on LU decomposition for execution on a cluster of computers running in parallel with distributed storage of the data in a sparse format. In this paper, the details of electrical tissue representation, the fast algorithm, the relevant biomodels, and specific applications to whole-animal studies of electrostimulation are discussed</description><subject>Algorithms</subject><subject>Animal structures</subject><subject>Clustering algorithms</subject><subject>Computation</subject><subject>Computer simulation</subject><subject>Concurrent computing</subject><subject>Conductivity</subject><subject>Demand</subject><subject>Distributed computing</subject><subject>Distributed currents</subject><subject>Electric potential</subject><subject>Electricity</subject><subject>Format</subject><subject>Grid computing</subject><subject>LU decomposition</subject><subject>Mathematical models</subject><subject>Numerical analysis</subject><subject>Numerical simulation</subject><subject>parallel computing</subject><subject>Permittivity</subject><subject>Resistivity</subject><subject>Spatial resolution</subject><subject>tissue modeling</subject><subject>Tissues</subject><subject>Voltage</subject><subject>whole body</subject><subject>Zoology</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpdkUGP0zAQhS0EEmXhzIGLxYlLup44ju1jW-guUiUqbZdr5CYT8MqJg-0cdn8QvxNni4TEaTQz33uy5xHyHtgagOnr0_FuXTJWr5WsKyVekBVorgvNpXhJVoxpXnAF_DV5E-MDY1AJVq7I7w3dm5jo0QTjHDr7hB3d-WGak0nWj8bRzTQFb9qfdGtiXvqR3k0mRKSH-6xtkw_26ZmlvQ_0GLCz7dJG6vsFTTabmLGjJztg8RknHDscE93NIeQan3ffvUvmB0ZqR7qfnSu2vnukW-sH36GLb8mr3riI7_7WK3K__3La3RaHbzdfd5tD0fISUgGdqIUCDfK83ESVkrUdVBLKXihxlsIA5KE2Es1Zq7rXpgUtZY1ClZVk_Ip8uvjmL_-aMaZmsLFF58yIfo4N1NlL85KLjH78D33wc8gHy5QWILlSi9_1BWqDjzFg30zBDiY8NsCa5YlNjq1ZYmsusWXFh4vCIuI_upZcVIr_AWg-k44</recordid><startdate>20060801</startdate><enddate>20060801</enddate><creator>Mishra, A.</creator><creator>Joshi, R.P.</creator><creator>Schoenbach, K.H.</creator><creator>Clark, C.D.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20060801</creationdate><title>A Fast Parallelized Computational Approach Based on Sparse LU Factorization for Predictions of Spatial and Time-Dependent Currents and Voltages in Full-Body Biomodels</title><author>Mishra, A. ; Joshi, R.P. ; Schoenbach, K.H. ; Clark, C.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-1d56581917b11098270cd14712f585b75a118279a7eab986f9ac19776e5824703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Animal structures</topic><topic>Clustering algorithms</topic><topic>Computation</topic><topic>Computer simulation</topic><topic>Concurrent computing</topic><topic>Conductivity</topic><topic>Demand</topic><topic>Distributed computing</topic><topic>Distributed currents</topic><topic>Electric potential</topic><topic>Electricity</topic><topic>Format</topic><topic>Grid computing</topic><topic>LU decomposition</topic><topic>Mathematical models</topic><topic>Numerical analysis</topic><topic>Numerical simulation</topic><topic>parallel computing</topic><topic>Permittivity</topic><topic>Resistivity</topic><topic>Spatial resolution</topic><topic>tissue modeling</topic><topic>Tissues</topic><topic>Voltage</topic><topic>whole body</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mishra, A.</creatorcontrib><creatorcontrib>Joshi, R.P.</creatorcontrib><creatorcontrib>Schoenbach, K.H.</creatorcontrib><creatorcontrib>Clark, C.D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mishra, A.</au><au>Joshi, R.P.</au><au>Schoenbach, K.H.</au><au>Clark, C.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Fast Parallelized Computational Approach Based on Sparse LU Factorization for Predictions of Spatial and Time-Dependent Currents and Voltages in Full-Body Biomodels</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2006-08-01</date><risdate>2006</risdate><volume>34</volume><issue>4</issue><spage>1431</spage><epage>1440</epage><pages>1431-1440</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>Realistic and accurate numerical simulations of electrostimulation of tissues and full-body biomodels have been developed and implemented. Typically, whole-body systems are very complex and consist of a multitude of tissues, organs, and subcomponents with diverse properties. From an electrical standpoint, these can be characterized in terms of separate conductivities and permittivities. Accuracy demands good spatial resolution; thus, the overall tissue/animal models need to be discretized into a fine-grained mesh. This can lead to a large number of grid points (especially for a three-dimensional entity) and can place prohibitive requirements of memory storage and execution times on computing machines. Here, the authors include a simple yet fast and efficient numerical implementation. It is based on LU decomposition for execution on a cluster of computers running in parallel with distributed storage of the data in a sparse format. In this paper, the details of electrical tissue representation, the fast algorithm, the relevant biomodels, and specific applications to whole-animal studies of electrostimulation are discussed</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPS.2006.876485</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0093-3813 |
ispartof | IEEE transactions on plasma science, 2006-08, Vol.34 (4), p.1431-1440 |
issn | 0093-3813 1939-9375 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671293235 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Animal structures Clustering algorithms Computation Computer simulation Concurrent computing Conductivity Demand Distributed computing Distributed currents Electric potential Electricity Format Grid computing LU decomposition Mathematical models Numerical analysis Numerical simulation parallel computing Permittivity Resistivity Spatial resolution tissue modeling Tissues Voltage whole body Zoology |
title | A Fast Parallelized Computational Approach Based on Sparse LU Factorization for Predictions of Spatial and Time-Dependent Currents and Voltages in Full-Body Biomodels |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A43%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Fast%20Parallelized%20Computational%20Approach%20Based%20on%20Sparse%20LU%20Factorization%20for%20Predictions%20of%20Spatial%20and%20Time-Dependent%20Currents%20and%20Voltages%20in%20Full-Body%20Biomodels&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Mishra,%20A.&rft.date=2006-08-01&rft.volume=34&rft.issue=4&rft.spage=1431&rft.epage=1440&rft.pages=1431-1440&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2006.876485&rft_dat=%3Cproquest_ieee_%3E1671293235%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c321t-1d56581917b11098270cd14712f585b75a118279a7eab986f9ac19776e5824703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=195173880&rft_id=info:pmid/&rft_ieee_id=1673548&rfr_iscdi=true |