Loading…
Hamiltonian reductions for modeling relativistic laser-plasma interactions
► We examine Hamiltonian reductions of the Vlasov–Maxwell system. ► We demonstrate a fluid-like reduction without a closure. ► We construct a self-consistent moment-based description of a beam-plasma system. We show two applications of Hamiltonian reductions related to relativistic laser-plasma inte...
Saved in:
Published in: | Communications in nonlinear science & numerical simulation 2012-05, Vol.17 (5), p.2153-2160 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c336t-ac446fbdccdb6c18ef8f4c7ecfe4c9739676ba299f8db2a7425877d3c21e6ceb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c336t-ac446fbdccdb6c18ef8f4c7ecfe4c9739676ba299f8db2a7425877d3c21e6ceb3 |
container_end_page | 2160 |
container_issue | 5 |
container_start_page | 2153 |
container_title | Communications in nonlinear science & numerical simulation |
container_volume | 17 |
creator | Shadwick, B.A. Tarkenton, G.M. Esarey, E. Lee, Frank M. |
description | ► We examine Hamiltonian reductions of the Vlasov–Maxwell system. ► We demonstrate a fluid-like reduction without a closure. ► We construct a self-consistent moment-based description of a beam-plasma system.
We show two applications of Hamiltonian reductions related to relativistic laser-plasma interactions starting from the Vlasov–Maxwell equation. The use of the Hamiltonian formalism ensures a consistent asymptotic ordering and results in reduced models that maximally preserve the structure of Vlasov–Maxwell system. |
doi_str_mv | 10.1016/j.cnsns.2011.05.045 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671295127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1007570411003121</els_id><sourcerecordid>1671295127</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-ac446fbdccdb6c18ef8f4c7ecfe4c9739676ba299f8db2a7425877d3c21e6ceb3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwC1gysiTYjmMnAwOq-FQlFpgt53xGrhKn2Gkl_j0uZWZ6T6f3OekeQq4ZrRhl8nZTQUghVZwyVtGmoqI5IQvWqrZUXInTPFOqykZRcU4uUtrQTHWNWJDXZzP6YZ6CN6GIaHcw-ymkwk2xGCeLgw-feT-Y2e99mj0Ug0kYy22O0RQ-zBjNkbkkZ84MCa_-ckk-Hh_eV8_l-u3pZXW_LqGu5VwaEEK63gLYXgJr0bVOgEJwKKBTdSeV7A3vOtfanhsleNMqZWvgDCVgXy_JzfHuNk5fO0yzHn0CHAYTcNolzaRivGsYV7laH6sQp5QiOr2NfjTxWzOqD-b0Rv-a0wdzmjY6m8vU3ZHC_MXeY9QJPAZA6yPCrO3k_-V_AHPEewM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671295127</pqid></control><display><type>article</type><title>Hamiltonian reductions for modeling relativistic laser-plasma interactions</title><source>ScienceDirect Freedom Collection</source><creator>Shadwick, B.A. ; Tarkenton, G.M. ; Esarey, E. ; Lee, Frank M.</creator><creatorcontrib>Shadwick, B.A. ; Tarkenton, G.M. ; Esarey, E. ; Lee, Frank M.</creatorcontrib><description>► We examine Hamiltonian reductions of the Vlasov–Maxwell system. ► We demonstrate a fluid-like reduction without a closure. ► We construct a self-consistent moment-based description of a beam-plasma system.
We show two applications of Hamiltonian reductions related to relativistic laser-plasma interactions starting from the Vlasov–Maxwell equation. The use of the Hamiltonian formalism ensures a consistent asymptotic ordering and results in reduced models that maximally preserve the structure of Vlasov–Maxwell system.</description><identifier>ISSN: 1007-5704</identifier><identifier>EISSN: 1878-7274</identifier><identifier>DOI: 10.1016/j.cnsns.2011.05.045</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Asymptotic properties ; Computer simulation ; Fluid models ; Formalism ; Hamiltonian reduction ; Laser-plasma interactions ; Mathematical analysis ; Mathematical models ; Moments ; Nonlinearity ; Preserves ; Reduction ; Relativistic plasmas</subject><ispartof>Communications in nonlinear science & numerical simulation, 2012-05, Vol.17 (5), p.2153-2160</ispartof><rights>2011 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-ac446fbdccdb6c18ef8f4c7ecfe4c9739676ba299f8db2a7425877d3c21e6ceb3</citedby><cites>FETCH-LOGICAL-c336t-ac446fbdccdb6c18ef8f4c7ecfe4c9739676ba299f8db2a7425877d3c21e6ceb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Shadwick, B.A.</creatorcontrib><creatorcontrib>Tarkenton, G.M.</creatorcontrib><creatorcontrib>Esarey, E.</creatorcontrib><creatorcontrib>Lee, Frank M.</creatorcontrib><title>Hamiltonian reductions for modeling relativistic laser-plasma interactions</title><title>Communications in nonlinear science & numerical simulation</title><description>► We examine Hamiltonian reductions of the Vlasov–Maxwell system. ► We demonstrate a fluid-like reduction without a closure. ► We construct a self-consistent moment-based description of a beam-plasma system.
We show two applications of Hamiltonian reductions related to relativistic laser-plasma interactions starting from the Vlasov–Maxwell equation. The use of the Hamiltonian formalism ensures a consistent asymptotic ordering and results in reduced models that maximally preserve the structure of Vlasov–Maxwell system.</description><subject>Asymptotic properties</subject><subject>Computer simulation</subject><subject>Fluid models</subject><subject>Formalism</subject><subject>Hamiltonian reduction</subject><subject>Laser-plasma interactions</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Moments</subject><subject>Nonlinearity</subject><subject>Preserves</subject><subject>Reduction</subject><subject>Relativistic plasmas</subject><issn>1007-5704</issn><issn>1878-7274</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwC1gysiTYjmMnAwOq-FQlFpgt53xGrhKn2Gkl_j0uZWZ6T6f3OekeQq4ZrRhl8nZTQUghVZwyVtGmoqI5IQvWqrZUXInTPFOqykZRcU4uUtrQTHWNWJDXZzP6YZ6CN6GIaHcw-ymkwk2xGCeLgw-feT-Y2e99mj0Ug0kYy22O0RQ-zBjNkbkkZ84MCa_-ckk-Hh_eV8_l-u3pZXW_LqGu5VwaEEK63gLYXgJr0bVOgEJwKKBTdSeV7A3vOtfanhsleNMqZWvgDCVgXy_JzfHuNk5fO0yzHn0CHAYTcNolzaRivGsYV7laH6sQp5QiOr2NfjTxWzOqD-b0Rv-a0wdzmjY6m8vU3ZHC_MXeY9QJPAZA6yPCrO3k_-V_AHPEewM</recordid><startdate>20120501</startdate><enddate>20120501</enddate><creator>Shadwick, B.A.</creator><creator>Tarkenton, G.M.</creator><creator>Esarey, E.</creator><creator>Lee, Frank M.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120501</creationdate><title>Hamiltonian reductions for modeling relativistic laser-plasma interactions</title><author>Shadwick, B.A. ; Tarkenton, G.M. ; Esarey, E. ; Lee, Frank M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-ac446fbdccdb6c18ef8f4c7ecfe4c9739676ba299f8db2a7425877d3c21e6ceb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Asymptotic properties</topic><topic>Computer simulation</topic><topic>Fluid models</topic><topic>Formalism</topic><topic>Hamiltonian reduction</topic><topic>Laser-plasma interactions</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Moments</topic><topic>Nonlinearity</topic><topic>Preserves</topic><topic>Reduction</topic><topic>Relativistic plasmas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shadwick, B.A.</creatorcontrib><creatorcontrib>Tarkenton, G.M.</creatorcontrib><creatorcontrib>Esarey, E.</creatorcontrib><creatorcontrib>Lee, Frank M.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Communications in nonlinear science & numerical simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shadwick, B.A.</au><au>Tarkenton, G.M.</au><au>Esarey, E.</au><au>Lee, Frank M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hamiltonian reductions for modeling relativistic laser-plasma interactions</atitle><jtitle>Communications in nonlinear science & numerical simulation</jtitle><date>2012-05-01</date><risdate>2012</risdate><volume>17</volume><issue>5</issue><spage>2153</spage><epage>2160</epage><pages>2153-2160</pages><issn>1007-5704</issn><eissn>1878-7274</eissn><abstract>► We examine Hamiltonian reductions of the Vlasov–Maxwell system. ► We demonstrate a fluid-like reduction without a closure. ► We construct a self-consistent moment-based description of a beam-plasma system.
We show two applications of Hamiltonian reductions related to relativistic laser-plasma interactions starting from the Vlasov–Maxwell equation. The use of the Hamiltonian formalism ensures a consistent asymptotic ordering and results in reduced models that maximally preserve the structure of Vlasov–Maxwell system.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cnsns.2011.05.045</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1007-5704 |
ispartof | Communications in nonlinear science & numerical simulation, 2012-05, Vol.17 (5), p.2153-2160 |
issn | 1007-5704 1878-7274 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671295127 |
source | ScienceDirect Freedom Collection |
subjects | Asymptotic properties Computer simulation Fluid models Formalism Hamiltonian reduction Laser-plasma interactions Mathematical analysis Mathematical models Moments Nonlinearity Preserves Reduction Relativistic plasmas |
title | Hamiltonian reductions for modeling relativistic laser-plasma interactions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A14%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hamiltonian%20reductions%20for%20modeling%20relativistic%20laser-plasma%20interactions&rft.jtitle=Communications%20in%20nonlinear%20science%20&%20numerical%20simulation&rft.au=Shadwick,%20B.A.&rft.date=2012-05-01&rft.volume=17&rft.issue=5&rft.spage=2153&rft.epage=2160&rft.pages=2153-2160&rft.issn=1007-5704&rft.eissn=1878-7274&rft_id=info:doi/10.1016/j.cnsns.2011.05.045&rft_dat=%3Cproquest_cross%3E1671295127%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c336t-ac446fbdccdb6c18ef8f4c7ecfe4c9739676ba299f8db2a7425877d3c21e6ceb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671295127&rft_id=info:pmid/&rfr_iscdi=true |