Loading…

Predicting hydrate plug formation in oil-dominated flowlines

This work describes the development and application of a transient multiphase flow simulator which incorporates hydrate formation kinetics and thermodynamics to predict plugging in multiphase oil production lines. The model (CSMHyK v. 2.0) is shown to predict the formation of hydrate plugs in two in...

Full description

Saved in:
Bibliographic Details
Published in:Journal of petroleum science & engineering 2010-06, Vol.72 (3), p.302-309
Main Authors: Davies, Simon R., Boxall, John A., Dieker, Laura E., Sum, Amadeu K., Koh, Carolyn A., Sloan, E. Dendy, Creek, Jefferson L., Xu, Zheng-Gang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c415t-58488c0f29d89d45c664d0385cdf94784e8626fa550118f8f0e1e907f5bfe9f33
cites cdi_FETCH-LOGICAL-c415t-58488c0f29d89d45c664d0385cdf94784e8626fa550118f8f0e1e907f5bfe9f33
container_end_page 309
container_issue 3
container_start_page 302
container_title Journal of petroleum science & engineering
container_volume 72
creator Davies, Simon R.
Boxall, John A.
Dieker, Laura E.
Sum, Amadeu K.
Koh, Carolyn A.
Sloan, E. Dendy
Creek, Jefferson L.
Xu, Zheng-Gang
description This work describes the development and application of a transient multiphase flow simulator which incorporates hydrate formation kinetics and thermodynamics to predict plugging in multiphase oil production lines. The model (CSMHyK v. 2.0) is shown to predict the formation of hydrate plugs in two industrial scale flowloops, by combining well known engineering correlations with state-of-the-art measurements. The experimental measurements described here allowed two fitted parameters to be eliminated. Applications of the model are demonstrated by forecasting hydrate formation rates in industrial flowlines. Further developments have allowed hydrate formation in systems with varying concentrations of salt or monoethylene glycol to be simulated by adjusting the hydrate equilibrium P– T curve as the concentration of inhibitor changes.
doi_str_mv 10.1016/j.petrol.2010.03.031
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671296527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0920410510000872</els_id><sourcerecordid>1671296527</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-58488c0f29d89d45c664d0385cdf94784e8626fa550118f8f0e1e907f5bfe9f33</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJgrf4DD3sRvGyd7Ca7CYgg4hcU9KDnEJNJTUk3Ndkq_fdu2eJReDAw8968mUfIOYUZBdpcLWdr7FMMswqGFtQD6AGZUNHWJWspPyQTkBWUjAI_Jic5LwGgbup2Qq5fE1pvet8tis-tTbrHYh02i8LFtNK9j13huyL6UNq48t0wtoUL8Sf4DvMpOXI6ZDzb1yl5f7h_u3sq5y-Pz3e389IwyvuSCyaEAVdJK6Rl3DQNs1ALbqyTrBUMRVM1TnMOlAonHCBFCa3jHw6lq-spuRz3rlP82mDu1cpngyHoDuMmK9q0tJINr9qBykaqSTHnhE6tk1_ptFUU1C4stVRjWGoXloJ6AB1kF3sHnY0OLunO-PynrSrZSs53l9yMPBze_faYVDYeOzNkmND0ykb_v9EvNKqBOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671296527</pqid></control><display><type>article</type><title>Predicting hydrate plug formation in oil-dominated flowlines</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Davies, Simon R. ; Boxall, John A. ; Dieker, Laura E. ; Sum, Amadeu K. ; Koh, Carolyn A. ; Sloan, E. Dendy ; Creek, Jefferson L. ; Xu, Zheng-Gang</creator><creatorcontrib>Davies, Simon R. ; Boxall, John A. ; Dieker, Laura E. ; Sum, Amadeu K. ; Koh, Carolyn A. ; Sloan, E. Dendy ; Creek, Jefferson L. ; Xu, Zheng-Gang</creatorcontrib><description>This work describes the development and application of a transient multiphase flow simulator which incorporates hydrate formation kinetics and thermodynamics to predict plugging in multiphase oil production lines. The model (CSMHyK v. 2.0) is shown to predict the formation of hydrate plugs in two industrial scale flowloops, by combining well known engineering correlations with state-of-the-art measurements. The experimental measurements described here allowed two fitted parameters to be eliminated. Applications of the model are demonstrated by forecasting hydrate formation rates in industrial flowlines. Further developments have allowed hydrate formation in systems with varying concentrations of salt or monoethylene glycol to be simulated by adjusting the hydrate equilibrium P– T curve as the concentration of inhibitor changes.</description><identifier>ISSN: 0920-4105</identifier><identifier>EISSN: 1873-4715</identifier><identifier>DOI: 10.1016/j.petrol.2010.03.031</identifier><identifier>CODEN: JPSEE6</identifier><language>eng</language><publisher>Oxford: Elsevier B.V</publisher><subject>Applied sciences ; Computer simulation ; Crude oil ; Crude oil, natural gas and petroleum products ; Energy ; Exact sciences and technology ; flow assurance ; flowloop ; Fuels ; hydrate ; Hydrates ; Inhibitors ; Mathematical models ; Multiphase flow ; OLGA ; plug ; Plugging ; State of the art</subject><ispartof>Journal of petroleum science &amp; engineering, 2010-06, Vol.72 (3), p.302-309</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-58488c0f29d89d45c664d0385cdf94784e8626fa550118f8f0e1e907f5bfe9f33</citedby><cites>FETCH-LOGICAL-c415t-58488c0f29d89d45c664d0385cdf94784e8626fa550118f8f0e1e907f5bfe9f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22979553$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Davies, Simon R.</creatorcontrib><creatorcontrib>Boxall, John A.</creatorcontrib><creatorcontrib>Dieker, Laura E.</creatorcontrib><creatorcontrib>Sum, Amadeu K.</creatorcontrib><creatorcontrib>Koh, Carolyn A.</creatorcontrib><creatorcontrib>Sloan, E. Dendy</creatorcontrib><creatorcontrib>Creek, Jefferson L.</creatorcontrib><creatorcontrib>Xu, Zheng-Gang</creatorcontrib><title>Predicting hydrate plug formation in oil-dominated flowlines</title><title>Journal of petroleum science &amp; engineering</title><description>This work describes the development and application of a transient multiphase flow simulator which incorporates hydrate formation kinetics and thermodynamics to predict plugging in multiphase oil production lines. The model (CSMHyK v. 2.0) is shown to predict the formation of hydrate plugs in two industrial scale flowloops, by combining well known engineering correlations with state-of-the-art measurements. The experimental measurements described here allowed two fitted parameters to be eliminated. Applications of the model are demonstrated by forecasting hydrate formation rates in industrial flowlines. Further developments have allowed hydrate formation in systems with varying concentrations of salt or monoethylene glycol to be simulated by adjusting the hydrate equilibrium P– T curve as the concentration of inhibitor changes.</description><subject>Applied sciences</subject><subject>Computer simulation</subject><subject>Crude oil</subject><subject>Crude oil, natural gas and petroleum products</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>flow assurance</subject><subject>flowloop</subject><subject>Fuels</subject><subject>hydrate</subject><subject>Hydrates</subject><subject>Inhibitors</subject><subject>Mathematical models</subject><subject>Multiphase flow</subject><subject>OLGA</subject><subject>plug</subject><subject>Plugging</subject><subject>State of the art</subject><issn>0920-4105</issn><issn>1873-4715</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEQDaJgrf4DD3sRvGyd7Ca7CYgg4hcU9KDnEJNJTUk3Ndkq_fdu2eJReDAw8968mUfIOYUZBdpcLWdr7FMMswqGFtQD6AGZUNHWJWspPyQTkBWUjAI_Jic5LwGgbup2Qq5fE1pvet8tis-tTbrHYh02i8LFtNK9j13huyL6UNq48t0wtoUL8Sf4DvMpOXI6ZDzb1yl5f7h_u3sq5y-Pz3e389IwyvuSCyaEAVdJK6Rl3DQNs1ALbqyTrBUMRVM1TnMOlAonHCBFCa3jHw6lq-spuRz3rlP82mDu1cpngyHoDuMmK9q0tJINr9qBykaqSTHnhE6tk1_ptFUU1C4stVRjWGoXloJ6AB1kF3sHnY0OLunO-PynrSrZSs53l9yMPBze_faYVDYeOzNkmND0ykb_v9EvNKqBOg</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Davies, Simon R.</creator><creator>Boxall, John A.</creator><creator>Dieker, Laura E.</creator><creator>Sum, Amadeu K.</creator><creator>Koh, Carolyn A.</creator><creator>Sloan, E. Dendy</creator><creator>Creek, Jefferson L.</creator><creator>Xu, Zheng-Gang</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20100601</creationdate><title>Predicting hydrate plug formation in oil-dominated flowlines</title><author>Davies, Simon R. ; Boxall, John A. ; Dieker, Laura E. ; Sum, Amadeu K. ; Koh, Carolyn A. ; Sloan, E. Dendy ; Creek, Jefferson L. ; Xu, Zheng-Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-58488c0f29d89d45c664d0385cdf94784e8626fa550118f8f0e1e907f5bfe9f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Computer simulation</topic><topic>Crude oil</topic><topic>Crude oil, natural gas and petroleum products</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>flow assurance</topic><topic>flowloop</topic><topic>Fuels</topic><topic>hydrate</topic><topic>Hydrates</topic><topic>Inhibitors</topic><topic>Mathematical models</topic><topic>Multiphase flow</topic><topic>OLGA</topic><topic>plug</topic><topic>Plugging</topic><topic>State of the art</topic><toplevel>online_resources</toplevel><creatorcontrib>Davies, Simon R.</creatorcontrib><creatorcontrib>Boxall, John A.</creatorcontrib><creatorcontrib>Dieker, Laura E.</creatorcontrib><creatorcontrib>Sum, Amadeu K.</creatorcontrib><creatorcontrib>Koh, Carolyn A.</creatorcontrib><creatorcontrib>Sloan, E. Dendy</creatorcontrib><creatorcontrib>Creek, Jefferson L.</creatorcontrib><creatorcontrib>Xu, Zheng-Gang</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of petroleum science &amp; engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Davies, Simon R.</au><au>Boxall, John A.</au><au>Dieker, Laura E.</au><au>Sum, Amadeu K.</au><au>Koh, Carolyn A.</au><au>Sloan, E. Dendy</au><au>Creek, Jefferson L.</au><au>Xu, Zheng-Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting hydrate plug formation in oil-dominated flowlines</atitle><jtitle>Journal of petroleum science &amp; engineering</jtitle><date>2010-06-01</date><risdate>2010</risdate><volume>72</volume><issue>3</issue><spage>302</spage><epage>309</epage><pages>302-309</pages><issn>0920-4105</issn><eissn>1873-4715</eissn><coden>JPSEE6</coden><abstract>This work describes the development and application of a transient multiphase flow simulator which incorporates hydrate formation kinetics and thermodynamics to predict plugging in multiphase oil production lines. The model (CSMHyK v. 2.0) is shown to predict the formation of hydrate plugs in two industrial scale flowloops, by combining well known engineering correlations with state-of-the-art measurements. The experimental measurements described here allowed two fitted parameters to be eliminated. Applications of the model are demonstrated by forecasting hydrate formation rates in industrial flowlines. Further developments have allowed hydrate formation in systems with varying concentrations of salt or monoethylene glycol to be simulated by adjusting the hydrate equilibrium P– T curve as the concentration of inhibitor changes.</abstract><cop>Oxford</cop><pub>Elsevier B.V</pub><doi>10.1016/j.petrol.2010.03.031</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0920-4105
ispartof Journal of petroleum science & engineering, 2010-06, Vol.72 (3), p.302-309
issn 0920-4105
1873-4715
language eng
recordid cdi_proquest_miscellaneous_1671296527
source ScienceDirect Freedom Collection 2022-2024
subjects Applied sciences
Computer simulation
Crude oil
Crude oil, natural gas and petroleum products
Energy
Exact sciences and technology
flow assurance
flowloop
Fuels
hydrate
Hydrates
Inhibitors
Mathematical models
Multiphase flow
OLGA
plug
Plugging
State of the art
title Predicting hydrate plug formation in oil-dominated flowlines
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A39%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20hydrate%20plug%20formation%20in%20oil-dominated%20flowlines&rft.jtitle=Journal%20of%20petroleum%20science%20&%20engineering&rft.au=Davies,%20Simon%20R.&rft.date=2010-06-01&rft.volume=72&rft.issue=3&rft.spage=302&rft.epage=309&rft.pages=302-309&rft.issn=0920-4105&rft.eissn=1873-4715&rft.coden=JPSEE6&rft_id=info:doi/10.1016/j.petrol.2010.03.031&rft_dat=%3Cproquest_cross%3E1671296527%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c415t-58488c0f29d89d45c664d0385cdf94784e8626fa550118f8f0e1e907f5bfe9f33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671296527&rft_id=info:pmid/&rfr_iscdi=true