Loading…
Predicting hydrate plug formation in oil-dominated flowlines
This work describes the development and application of a transient multiphase flow simulator which incorporates hydrate formation kinetics and thermodynamics to predict plugging in multiphase oil production lines. The model (CSMHyK v. 2.0) is shown to predict the formation of hydrate plugs in two in...
Saved in:
Published in: | Journal of petroleum science & engineering 2010-06, Vol.72 (3), p.302-309 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c415t-58488c0f29d89d45c664d0385cdf94784e8626fa550118f8f0e1e907f5bfe9f33 |
---|---|
cites | cdi_FETCH-LOGICAL-c415t-58488c0f29d89d45c664d0385cdf94784e8626fa550118f8f0e1e907f5bfe9f33 |
container_end_page | 309 |
container_issue | 3 |
container_start_page | 302 |
container_title | Journal of petroleum science & engineering |
container_volume | 72 |
creator | Davies, Simon R. Boxall, John A. Dieker, Laura E. Sum, Amadeu K. Koh, Carolyn A. Sloan, E. Dendy Creek, Jefferson L. Xu, Zheng-Gang |
description | This work describes the development and application of a transient multiphase flow simulator which incorporates hydrate formation kinetics and thermodynamics to predict plugging in multiphase oil production lines. The model (CSMHyK v. 2.0) is shown to predict the formation of hydrate plugs in two industrial scale flowloops, by combining well known engineering correlations with state-of-the-art measurements. The experimental measurements described here allowed two fitted parameters to be eliminated. Applications of the model are demonstrated by forecasting hydrate formation rates in industrial flowlines. Further developments have allowed hydrate formation in systems with varying concentrations of salt or monoethylene glycol to be simulated by adjusting the hydrate equilibrium
P–
T curve as the concentration of inhibitor changes. |
doi_str_mv | 10.1016/j.petrol.2010.03.031 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671296527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0920410510000872</els_id><sourcerecordid>1671296527</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-58488c0f29d89d45c664d0385cdf94784e8626fa550118f8f0e1e907f5bfe9f33</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJgrf4DD3sRvGyd7Ca7CYgg4hcU9KDnEJNJTUk3Ndkq_fdu2eJReDAw8968mUfIOYUZBdpcLWdr7FMMswqGFtQD6AGZUNHWJWspPyQTkBWUjAI_Jic5LwGgbup2Qq5fE1pvet8tis-tTbrHYh02i8LFtNK9j13huyL6UNq48t0wtoUL8Sf4DvMpOXI6ZDzb1yl5f7h_u3sq5y-Pz3e389IwyvuSCyaEAVdJK6Rl3DQNs1ALbqyTrBUMRVM1TnMOlAonHCBFCa3jHw6lq-spuRz3rlP82mDu1cpngyHoDuMmK9q0tJINr9qBykaqSTHnhE6tk1_ptFUU1C4stVRjWGoXloJ6AB1kF3sHnY0OLunO-PynrSrZSs53l9yMPBze_faYVDYeOzNkmND0ykb_v9EvNKqBOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671296527</pqid></control><display><type>article</type><title>Predicting hydrate plug formation in oil-dominated flowlines</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Davies, Simon R. ; Boxall, John A. ; Dieker, Laura E. ; Sum, Amadeu K. ; Koh, Carolyn A. ; Sloan, E. Dendy ; Creek, Jefferson L. ; Xu, Zheng-Gang</creator><creatorcontrib>Davies, Simon R. ; Boxall, John A. ; Dieker, Laura E. ; Sum, Amadeu K. ; Koh, Carolyn A. ; Sloan, E. Dendy ; Creek, Jefferson L. ; Xu, Zheng-Gang</creatorcontrib><description>This work describes the development and application of a transient multiphase flow simulator which incorporates hydrate formation kinetics and thermodynamics to predict plugging in multiphase oil production lines. The model (CSMHyK v. 2.0) is shown to predict the formation of hydrate plugs in two industrial scale flowloops, by combining well known engineering correlations with state-of-the-art measurements. The experimental measurements described here allowed two fitted parameters to be eliminated. Applications of the model are demonstrated by forecasting hydrate formation rates in industrial flowlines. Further developments have allowed hydrate formation in systems with varying concentrations of salt or monoethylene glycol to be simulated by adjusting the hydrate equilibrium
P–
T curve as the concentration of inhibitor changes.</description><identifier>ISSN: 0920-4105</identifier><identifier>EISSN: 1873-4715</identifier><identifier>DOI: 10.1016/j.petrol.2010.03.031</identifier><identifier>CODEN: JPSEE6</identifier><language>eng</language><publisher>Oxford: Elsevier B.V</publisher><subject>Applied sciences ; Computer simulation ; Crude oil ; Crude oil, natural gas and petroleum products ; Energy ; Exact sciences and technology ; flow assurance ; flowloop ; Fuels ; hydrate ; Hydrates ; Inhibitors ; Mathematical models ; Multiphase flow ; OLGA ; plug ; Plugging ; State of the art</subject><ispartof>Journal of petroleum science & engineering, 2010-06, Vol.72 (3), p.302-309</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-58488c0f29d89d45c664d0385cdf94784e8626fa550118f8f0e1e907f5bfe9f33</citedby><cites>FETCH-LOGICAL-c415t-58488c0f29d89d45c664d0385cdf94784e8626fa550118f8f0e1e907f5bfe9f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22979553$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Davies, Simon R.</creatorcontrib><creatorcontrib>Boxall, John A.</creatorcontrib><creatorcontrib>Dieker, Laura E.</creatorcontrib><creatorcontrib>Sum, Amadeu K.</creatorcontrib><creatorcontrib>Koh, Carolyn A.</creatorcontrib><creatorcontrib>Sloan, E. Dendy</creatorcontrib><creatorcontrib>Creek, Jefferson L.</creatorcontrib><creatorcontrib>Xu, Zheng-Gang</creatorcontrib><title>Predicting hydrate plug formation in oil-dominated flowlines</title><title>Journal of petroleum science & engineering</title><description>This work describes the development and application of a transient multiphase flow simulator which incorporates hydrate formation kinetics and thermodynamics to predict plugging in multiphase oil production lines. The model (CSMHyK v. 2.0) is shown to predict the formation of hydrate plugs in two industrial scale flowloops, by combining well known engineering correlations with state-of-the-art measurements. The experimental measurements described here allowed two fitted parameters to be eliminated. Applications of the model are demonstrated by forecasting hydrate formation rates in industrial flowlines. Further developments have allowed hydrate formation in systems with varying concentrations of salt or monoethylene glycol to be simulated by adjusting the hydrate equilibrium
P–
T curve as the concentration of inhibitor changes.</description><subject>Applied sciences</subject><subject>Computer simulation</subject><subject>Crude oil</subject><subject>Crude oil, natural gas and petroleum products</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>flow assurance</subject><subject>flowloop</subject><subject>Fuels</subject><subject>hydrate</subject><subject>Hydrates</subject><subject>Inhibitors</subject><subject>Mathematical models</subject><subject>Multiphase flow</subject><subject>OLGA</subject><subject>plug</subject><subject>Plugging</subject><subject>State of the art</subject><issn>0920-4105</issn><issn>1873-4715</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEQDaJgrf4DD3sRvGyd7Ca7CYgg4hcU9KDnEJNJTUk3Ndkq_fdu2eJReDAw8968mUfIOYUZBdpcLWdr7FMMswqGFtQD6AGZUNHWJWspPyQTkBWUjAI_Jic5LwGgbup2Qq5fE1pvet8tis-tTbrHYh02i8LFtNK9j13huyL6UNq48t0wtoUL8Sf4DvMpOXI6ZDzb1yl5f7h_u3sq5y-Pz3e389IwyvuSCyaEAVdJK6Rl3DQNs1ALbqyTrBUMRVM1TnMOlAonHCBFCa3jHw6lq-spuRz3rlP82mDu1cpngyHoDuMmK9q0tJINr9qBykaqSTHnhE6tk1_ptFUU1C4stVRjWGoXloJ6AB1kF3sHnY0OLunO-PynrSrZSs53l9yMPBze_faYVDYeOzNkmND0ykb_v9EvNKqBOg</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Davies, Simon R.</creator><creator>Boxall, John A.</creator><creator>Dieker, Laura E.</creator><creator>Sum, Amadeu K.</creator><creator>Koh, Carolyn A.</creator><creator>Sloan, E. Dendy</creator><creator>Creek, Jefferson L.</creator><creator>Xu, Zheng-Gang</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20100601</creationdate><title>Predicting hydrate plug formation in oil-dominated flowlines</title><author>Davies, Simon R. ; Boxall, John A. ; Dieker, Laura E. ; Sum, Amadeu K. ; Koh, Carolyn A. ; Sloan, E. Dendy ; Creek, Jefferson L. ; Xu, Zheng-Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-58488c0f29d89d45c664d0385cdf94784e8626fa550118f8f0e1e907f5bfe9f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Computer simulation</topic><topic>Crude oil</topic><topic>Crude oil, natural gas and petroleum products</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>flow assurance</topic><topic>flowloop</topic><topic>Fuels</topic><topic>hydrate</topic><topic>Hydrates</topic><topic>Inhibitors</topic><topic>Mathematical models</topic><topic>Multiphase flow</topic><topic>OLGA</topic><topic>plug</topic><topic>Plugging</topic><topic>State of the art</topic><toplevel>online_resources</toplevel><creatorcontrib>Davies, Simon R.</creatorcontrib><creatorcontrib>Boxall, John A.</creatorcontrib><creatorcontrib>Dieker, Laura E.</creatorcontrib><creatorcontrib>Sum, Amadeu K.</creatorcontrib><creatorcontrib>Koh, Carolyn A.</creatorcontrib><creatorcontrib>Sloan, E. Dendy</creatorcontrib><creatorcontrib>Creek, Jefferson L.</creatorcontrib><creatorcontrib>Xu, Zheng-Gang</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of petroleum science & engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Davies, Simon R.</au><au>Boxall, John A.</au><au>Dieker, Laura E.</au><au>Sum, Amadeu K.</au><au>Koh, Carolyn A.</au><au>Sloan, E. Dendy</au><au>Creek, Jefferson L.</au><au>Xu, Zheng-Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting hydrate plug formation in oil-dominated flowlines</atitle><jtitle>Journal of petroleum science & engineering</jtitle><date>2010-06-01</date><risdate>2010</risdate><volume>72</volume><issue>3</issue><spage>302</spage><epage>309</epage><pages>302-309</pages><issn>0920-4105</issn><eissn>1873-4715</eissn><coden>JPSEE6</coden><abstract>This work describes the development and application of a transient multiphase flow simulator which incorporates hydrate formation kinetics and thermodynamics to predict plugging in multiphase oil production lines. The model (CSMHyK v. 2.0) is shown to predict the formation of hydrate plugs in two industrial scale flowloops, by combining well known engineering correlations with state-of-the-art measurements. The experimental measurements described here allowed two fitted parameters to be eliminated. Applications of the model are demonstrated by forecasting hydrate formation rates in industrial flowlines. Further developments have allowed hydrate formation in systems with varying concentrations of salt or monoethylene glycol to be simulated by adjusting the hydrate equilibrium
P–
T curve as the concentration of inhibitor changes.</abstract><cop>Oxford</cop><pub>Elsevier B.V</pub><doi>10.1016/j.petrol.2010.03.031</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-4105 |
ispartof | Journal of petroleum science & engineering, 2010-06, Vol.72 (3), p.302-309 |
issn | 0920-4105 1873-4715 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671296527 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Applied sciences Computer simulation Crude oil Crude oil, natural gas and petroleum products Energy Exact sciences and technology flow assurance flowloop Fuels hydrate Hydrates Inhibitors Mathematical models Multiphase flow OLGA plug Plugging State of the art |
title | Predicting hydrate plug formation in oil-dominated flowlines |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A39%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20hydrate%20plug%20formation%20in%20oil-dominated%20flowlines&rft.jtitle=Journal%20of%20petroleum%20science%20&%20engineering&rft.au=Davies,%20Simon%20R.&rft.date=2010-06-01&rft.volume=72&rft.issue=3&rft.spage=302&rft.epage=309&rft.pages=302-309&rft.issn=0920-4105&rft.eissn=1873-4715&rft.coden=JPSEE6&rft_id=info:doi/10.1016/j.petrol.2010.03.031&rft_dat=%3Cproquest_cross%3E1671296527%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c415t-58488c0f29d89d45c664d0385cdf94784e8626fa550118f8f0e1e907f5bfe9f33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671296527&rft_id=info:pmid/&rfr_iscdi=true |