Loading…
1D-VAR Retrieval of Temperature and Humidity Profiles From a Ground-Based Microwave Radiometer
A variational method to retrieve profiles of temperature, humidity, and cloud is described, which combines observations from a 12-channel microwave radiometer, an infrared radiometer, and surface sensors with background from shortrange numerical weather prediction (NWP) forecasts in an optimal way,...
Saved in:
Published in: | IEEE transactions on geoscience and remote sensing 2007-07, Vol.45 (7), p.2163-2168 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c498t-7b3abdc7c8177db0bffaeb6ad7cd1aa9b967a3acc958e7cba4f4b00aefc30bcb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c498t-7b3abdc7c8177db0bffaeb6ad7cd1aa9b967a3acc958e7cba4f4b00aefc30bcb3 |
container_end_page | 2168 |
container_issue | 7 |
container_start_page | 2163 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 45 |
creator | Hewison, T.J. |
description | A variational method to retrieve profiles of temperature, humidity, and cloud is described, which combines observations from a 12-channel microwave radiometer, an infrared radiometer, and surface sensors with background from shortrange numerical weather prediction (NWP) forecasts in an optimal way, accounting for their error characteristics. An analysis is presented of the error budget of the background and observations, including radiometric, modeling, and representativeness errors. Observation errors of some moisture channels are found to be dominated by representativeness, due to their sensitivity to atmospheric variability on smaller scales than the NWP model grid, whereas channels providing information on temperature in the lowest 1 km are dominated by instrument noise. Profiles of temperature and a novel total water control variable are retrieved from synthetic data using Newtonian iteration. An error analysis shows that these are expected to improve mesoscale NWP, retrieving temperature and humidity profiles up to 4 km with uncertainties of 1 K and 40% and 2.8 and 1.8 degrees of freedom for signal, respectively, albeit with poor vertical resolution. A cloud classification scheme is introduced to address convergence problems and better constrain the retrievals. This Bayesian retrieval method can be extended to incorporate observations from other instruments to form a basis for future integrated profiling systems. |
doi_str_mv | 10.1109/TGRS.2007.898091 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671303930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4261055</ieee_id><sourcerecordid>880675938</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-7b3abdc7c8177db0bffaeb6ad7cd1aa9b967a3acc958e7cba4f4b00aefc30bcb3</originalsourceid><addsrcrecordid>eNp9kU1rFEEQhhtRcN14F7w0gpjLbKp3ZvrjGKPZBBKUdfVoU91TAx1mptfumUj-fWbZoODBQ1GHet4XioexNwJWQoA5222231ZrALXSRoMRz9hC1LUuQFbVc7YAYWSx1mb9kr3K-Q5AVLVQC_ZTfCp-nG_5lsYU6B47Hlu-o35PCccpEceh4VdTH5owPvCvKbaho8wvU-w58k2K09AUHzFTw2-DT_E33hPfYhNiTyOlE_aixS7T66e9ZN8vP-8uroqbL5vri_ObwldGj4VyJbrGK6-FUo0D17ZITmKjfCMQjTNSYYnem1qT8g6rtnIASK0vwXlXLtmHY-8-xV8T5dH2IXvqOhwoTtlqDVLVptQzefpfUkglSijNPEv27h_0Lk5pmP-wWlZgDCg5Q3CE5udzTtTafQo9pgcrwB7M2IMZezBjj2bmyPunXsweuzbh4EP-m9Mzp6WaubdHLhDRn3O1lgLqunwE15CXxw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864099076</pqid></control><display><type>article</type><title>1D-VAR Retrieval of Temperature and Humidity Profiles From a Ground-Based Microwave Radiometer</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Hewison, T.J.</creator><creatorcontrib>Hewison, T.J.</creatorcontrib><description>A variational method to retrieve profiles of temperature, humidity, and cloud is described, which combines observations from a 12-channel microwave radiometer, an infrared radiometer, and surface sensors with background from shortrange numerical weather prediction (NWP) forecasts in an optimal way, accounting for their error characteristics. An analysis is presented of the error budget of the background and observations, including radiometric, modeling, and representativeness errors. Observation errors of some moisture channels are found to be dominated by representativeness, due to their sensitivity to atmospheric variability on smaller scales than the NWP model grid, whereas channels providing information on temperature in the lowest 1 km are dominated by instrument noise. Profiles of temperature and a novel total water control variable are retrieved from synthetic data using Newtonian iteration. An error analysis shows that these are expected to improve mesoscale NWP, retrieving temperature and humidity profiles up to 4 km with uncertainties of 1 K and 40% and 2.8 and 1.8 degrees of freedom for signal, respectively, albeit with poor vertical resolution. A cloud classification scheme is introduced to address convergence problems and better constrain the retrievals. This Bayesian retrieval method can be extended to incorporate observations from other instruments to form a basis for future integrated profiling systems.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2007.898091</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied geophysics ; Atmospheric measurements ; Atmospheric modeling ; Channels ; Clouds ; Earth sciences ; Earth, ocean, space ; Error analysis ; Error detection ; Exact sciences and technology ; Humidity ; Infrared sensors ; Instruments ; Internal geophysics ; Mathematical models ; Meteorology ; Microwave radiometers ; Microwave radiometry ; Microwave theory and techniques ; remote sensing ; Retrieval ; Sensor phenomena and characterization ; Studies ; Temperature sensors ; variational methods ; Weather forecasting</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2007-07, Vol.45 (7), p.2163-2168</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-7b3abdc7c8177db0bffaeb6ad7cd1aa9b967a3acc958e7cba4f4b00aefc30bcb3</citedby><cites>FETCH-LOGICAL-c498t-7b3abdc7c8177db0bffaeb6ad7cd1aa9b967a3acc958e7cba4f4b00aefc30bcb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4261055$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18898867$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hewison, T.J.</creatorcontrib><title>1D-VAR Retrieval of Temperature and Humidity Profiles From a Ground-Based Microwave Radiometer</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>A variational method to retrieve profiles of temperature, humidity, and cloud is described, which combines observations from a 12-channel microwave radiometer, an infrared radiometer, and surface sensors with background from shortrange numerical weather prediction (NWP) forecasts in an optimal way, accounting for their error characteristics. An analysis is presented of the error budget of the background and observations, including radiometric, modeling, and representativeness errors. Observation errors of some moisture channels are found to be dominated by representativeness, due to their sensitivity to atmospheric variability on smaller scales than the NWP model grid, whereas channels providing information on temperature in the lowest 1 km are dominated by instrument noise. Profiles of temperature and a novel total water control variable are retrieved from synthetic data using Newtonian iteration. An error analysis shows that these are expected to improve mesoscale NWP, retrieving temperature and humidity profiles up to 4 km with uncertainties of 1 K and 40% and 2.8 and 1.8 degrees of freedom for signal, respectively, albeit with poor vertical resolution. A cloud classification scheme is introduced to address convergence problems and better constrain the retrievals. This Bayesian retrieval method can be extended to incorporate observations from other instruments to form a basis for future integrated profiling systems.</description><subject>Applied geophysics</subject><subject>Atmospheric measurements</subject><subject>Atmospheric modeling</subject><subject>Channels</subject><subject>Clouds</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Error analysis</subject><subject>Error detection</subject><subject>Exact sciences and technology</subject><subject>Humidity</subject><subject>Infrared sensors</subject><subject>Instruments</subject><subject>Internal geophysics</subject><subject>Mathematical models</subject><subject>Meteorology</subject><subject>Microwave radiometers</subject><subject>Microwave radiometry</subject><subject>Microwave theory and techniques</subject><subject>remote sensing</subject><subject>Retrieval</subject><subject>Sensor phenomena and characterization</subject><subject>Studies</subject><subject>Temperature sensors</subject><subject>variational methods</subject><subject>Weather forecasting</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kU1rFEEQhhtRcN14F7w0gpjLbKp3ZvrjGKPZBBKUdfVoU91TAx1mptfumUj-fWbZoODBQ1GHet4XioexNwJWQoA5222231ZrALXSRoMRz9hC1LUuQFbVc7YAYWSx1mb9kr3K-Q5AVLVQC_ZTfCp-nG_5lsYU6B47Hlu-o35PCccpEceh4VdTH5owPvCvKbaho8wvU-w58k2K09AUHzFTw2-DT_E33hPfYhNiTyOlE_aixS7T66e9ZN8vP-8uroqbL5vri_ObwldGj4VyJbrGK6-FUo0D17ZITmKjfCMQjTNSYYnem1qT8g6rtnIASK0vwXlXLtmHY-8-xV8T5dH2IXvqOhwoTtlqDVLVptQzefpfUkglSijNPEv27h_0Lk5pmP-wWlZgDCg5Q3CE5udzTtTafQo9pgcrwB7M2IMZezBjj2bmyPunXsweuzbh4EP-m9Mzp6WaubdHLhDRn3O1lgLqunwE15CXxw</recordid><startdate>20070701</startdate><enddate>20070701</enddate><creator>Hewison, T.J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7SP</scope><scope>F28</scope><scope>7QH</scope></search><sort><creationdate>20070701</creationdate><title>1D-VAR Retrieval of Temperature and Humidity Profiles From a Ground-Based Microwave Radiometer</title><author>Hewison, T.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-7b3abdc7c8177db0bffaeb6ad7cd1aa9b967a3acc958e7cba4f4b00aefc30bcb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied geophysics</topic><topic>Atmospheric measurements</topic><topic>Atmospheric modeling</topic><topic>Channels</topic><topic>Clouds</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Error analysis</topic><topic>Error detection</topic><topic>Exact sciences and technology</topic><topic>Humidity</topic><topic>Infrared sensors</topic><topic>Instruments</topic><topic>Internal geophysics</topic><topic>Mathematical models</topic><topic>Meteorology</topic><topic>Microwave radiometers</topic><topic>Microwave radiometry</topic><topic>Microwave theory and techniques</topic><topic>remote sensing</topic><topic>Retrieval</topic><topic>Sensor phenomena and characterization</topic><topic>Studies</topic><topic>Temperature sensors</topic><topic>variational methods</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hewison, T.J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics & Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Aqualine</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hewison, T.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>1D-VAR Retrieval of Temperature and Humidity Profiles From a Ground-Based Microwave Radiometer</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2007-07-01</date><risdate>2007</risdate><volume>45</volume><issue>7</issue><spage>2163</spage><epage>2168</epage><pages>2163-2168</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>A variational method to retrieve profiles of temperature, humidity, and cloud is described, which combines observations from a 12-channel microwave radiometer, an infrared radiometer, and surface sensors with background from shortrange numerical weather prediction (NWP) forecasts in an optimal way, accounting for their error characteristics. An analysis is presented of the error budget of the background and observations, including radiometric, modeling, and representativeness errors. Observation errors of some moisture channels are found to be dominated by representativeness, due to their sensitivity to atmospheric variability on smaller scales than the NWP model grid, whereas channels providing information on temperature in the lowest 1 km are dominated by instrument noise. Profiles of temperature and a novel total water control variable are retrieved from synthetic data using Newtonian iteration. An error analysis shows that these are expected to improve mesoscale NWP, retrieving temperature and humidity profiles up to 4 km with uncertainties of 1 K and 40% and 2.8 and 1.8 degrees of freedom for signal, respectively, albeit with poor vertical resolution. A cloud classification scheme is introduced to address convergence problems and better constrain the retrievals. This Bayesian retrieval method can be extended to incorporate observations from other instruments to form a basis for future integrated profiling systems.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TGRS.2007.898091</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2007-07, Vol.45 (7), p.2163-2168 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671303930 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Applied geophysics Atmospheric measurements Atmospheric modeling Channels Clouds Earth sciences Earth, ocean, space Error analysis Error detection Exact sciences and technology Humidity Infrared sensors Instruments Internal geophysics Mathematical models Meteorology Microwave radiometers Microwave radiometry Microwave theory and techniques remote sensing Retrieval Sensor phenomena and characterization Studies Temperature sensors variational methods Weather forecasting |
title | 1D-VAR Retrieval of Temperature and Humidity Profiles From a Ground-Based Microwave Radiometer |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A11%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=1D-VAR%20Retrieval%20of%20Temperature%20and%20Humidity%20Profiles%20From%20a%20Ground-Based%20Microwave%20Radiometer&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Hewison,%20T.J.&rft.date=2007-07-01&rft.volume=45&rft.issue=7&rft.spage=2163&rft.epage=2168&rft.pages=2163-2168&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2007.898091&rft_dat=%3Cproquest_cross%3E880675938%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c498t-7b3abdc7c8177db0bffaeb6ad7cd1aa9b967a3acc958e7cba4f4b00aefc30bcb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=864099076&rft_id=info:pmid/&rft_ieee_id=4261055&rfr_iscdi=true |