Loading…

1D-VAR Retrieval of Temperature and Humidity Profiles From a Ground-Based Microwave Radiometer

A variational method to retrieve profiles of temperature, humidity, and cloud is described, which combines observations from a 12-channel microwave radiometer, an infrared radiometer, and surface sensors with background from shortrange numerical weather prediction (NWP) forecasts in an optimal way,...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing 2007-07, Vol.45 (7), p.2163-2168
Main Author: Hewison, T.J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c498t-7b3abdc7c8177db0bffaeb6ad7cd1aa9b967a3acc958e7cba4f4b00aefc30bcb3
cites cdi_FETCH-LOGICAL-c498t-7b3abdc7c8177db0bffaeb6ad7cd1aa9b967a3acc958e7cba4f4b00aefc30bcb3
container_end_page 2168
container_issue 7
container_start_page 2163
container_title IEEE transactions on geoscience and remote sensing
container_volume 45
creator Hewison, T.J.
description A variational method to retrieve profiles of temperature, humidity, and cloud is described, which combines observations from a 12-channel microwave radiometer, an infrared radiometer, and surface sensors with background from shortrange numerical weather prediction (NWP) forecasts in an optimal way, accounting for their error characteristics. An analysis is presented of the error budget of the background and observations, including radiometric, modeling, and representativeness errors. Observation errors of some moisture channels are found to be dominated by representativeness, due to their sensitivity to atmospheric variability on smaller scales than the NWP model grid, whereas channels providing information on temperature in the lowest 1 km are dominated by instrument noise. Profiles of temperature and a novel total water control variable are retrieved from synthetic data using Newtonian iteration. An error analysis shows that these are expected to improve mesoscale NWP, retrieving temperature and humidity profiles up to 4 km with uncertainties of 1 K and 40% and 2.8 and 1.8 degrees of freedom for signal, respectively, albeit with poor vertical resolution. A cloud classification scheme is introduced to address convergence problems and better constrain the retrievals. This Bayesian retrieval method can be extended to incorporate observations from other instruments to form a basis for future integrated profiling systems.
doi_str_mv 10.1109/TGRS.2007.898091
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671303930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4261055</ieee_id><sourcerecordid>880675938</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-7b3abdc7c8177db0bffaeb6ad7cd1aa9b967a3acc958e7cba4f4b00aefc30bcb3</originalsourceid><addsrcrecordid>eNp9kU1rFEEQhhtRcN14F7w0gpjLbKp3ZvrjGKPZBBKUdfVoU91TAx1mptfumUj-fWbZoODBQ1GHet4XioexNwJWQoA5222231ZrALXSRoMRz9hC1LUuQFbVc7YAYWSx1mb9kr3K-Q5AVLVQC_ZTfCp-nG_5lsYU6B47Hlu-o35PCccpEceh4VdTH5owPvCvKbaho8wvU-w58k2K09AUHzFTw2-DT_E33hPfYhNiTyOlE_aixS7T66e9ZN8vP-8uroqbL5vri_ObwldGj4VyJbrGK6-FUo0D17ZITmKjfCMQjTNSYYnem1qT8g6rtnIASK0vwXlXLtmHY-8-xV8T5dH2IXvqOhwoTtlqDVLVptQzefpfUkglSijNPEv27h_0Lk5pmP-wWlZgDCg5Q3CE5udzTtTafQo9pgcrwB7M2IMZezBjj2bmyPunXsweuzbh4EP-m9Mzp6WaubdHLhDRn3O1lgLqunwE15CXxw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864099076</pqid></control><display><type>article</type><title>1D-VAR Retrieval of Temperature and Humidity Profiles From a Ground-Based Microwave Radiometer</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Hewison, T.J.</creator><creatorcontrib>Hewison, T.J.</creatorcontrib><description>A variational method to retrieve profiles of temperature, humidity, and cloud is described, which combines observations from a 12-channel microwave radiometer, an infrared radiometer, and surface sensors with background from shortrange numerical weather prediction (NWP) forecasts in an optimal way, accounting for their error characteristics. An analysis is presented of the error budget of the background and observations, including radiometric, modeling, and representativeness errors. Observation errors of some moisture channels are found to be dominated by representativeness, due to their sensitivity to atmospheric variability on smaller scales than the NWP model grid, whereas channels providing information on temperature in the lowest 1 km are dominated by instrument noise. Profiles of temperature and a novel total water control variable are retrieved from synthetic data using Newtonian iteration. An error analysis shows that these are expected to improve mesoscale NWP, retrieving temperature and humidity profiles up to 4 km with uncertainties of 1 K and 40% and 2.8 and 1.8 degrees of freedom for signal, respectively, albeit with poor vertical resolution. A cloud classification scheme is introduced to address convergence problems and better constrain the retrievals. This Bayesian retrieval method can be extended to incorporate observations from other instruments to form a basis for future integrated profiling systems.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2007.898091</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied geophysics ; Atmospheric measurements ; Atmospheric modeling ; Channels ; Clouds ; Earth sciences ; Earth, ocean, space ; Error analysis ; Error detection ; Exact sciences and technology ; Humidity ; Infrared sensors ; Instruments ; Internal geophysics ; Mathematical models ; Meteorology ; Microwave radiometers ; Microwave radiometry ; Microwave theory and techniques ; remote sensing ; Retrieval ; Sensor phenomena and characterization ; Studies ; Temperature sensors ; variational methods ; Weather forecasting</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2007-07, Vol.45 (7), p.2163-2168</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-7b3abdc7c8177db0bffaeb6ad7cd1aa9b967a3acc958e7cba4f4b00aefc30bcb3</citedby><cites>FETCH-LOGICAL-c498t-7b3abdc7c8177db0bffaeb6ad7cd1aa9b967a3acc958e7cba4f4b00aefc30bcb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4261055$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18898867$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hewison, T.J.</creatorcontrib><title>1D-VAR Retrieval of Temperature and Humidity Profiles From a Ground-Based Microwave Radiometer</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>A variational method to retrieve profiles of temperature, humidity, and cloud is described, which combines observations from a 12-channel microwave radiometer, an infrared radiometer, and surface sensors with background from shortrange numerical weather prediction (NWP) forecasts in an optimal way, accounting for their error characteristics. An analysis is presented of the error budget of the background and observations, including radiometric, modeling, and representativeness errors. Observation errors of some moisture channels are found to be dominated by representativeness, due to their sensitivity to atmospheric variability on smaller scales than the NWP model grid, whereas channels providing information on temperature in the lowest 1 km are dominated by instrument noise. Profiles of temperature and a novel total water control variable are retrieved from synthetic data using Newtonian iteration. An error analysis shows that these are expected to improve mesoscale NWP, retrieving temperature and humidity profiles up to 4 km with uncertainties of 1 K and 40% and 2.8 and 1.8 degrees of freedom for signal, respectively, albeit with poor vertical resolution. A cloud classification scheme is introduced to address convergence problems and better constrain the retrievals. This Bayesian retrieval method can be extended to incorporate observations from other instruments to form a basis for future integrated profiling systems.</description><subject>Applied geophysics</subject><subject>Atmospheric measurements</subject><subject>Atmospheric modeling</subject><subject>Channels</subject><subject>Clouds</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Error analysis</subject><subject>Error detection</subject><subject>Exact sciences and technology</subject><subject>Humidity</subject><subject>Infrared sensors</subject><subject>Instruments</subject><subject>Internal geophysics</subject><subject>Mathematical models</subject><subject>Meteorology</subject><subject>Microwave radiometers</subject><subject>Microwave radiometry</subject><subject>Microwave theory and techniques</subject><subject>remote sensing</subject><subject>Retrieval</subject><subject>Sensor phenomena and characterization</subject><subject>Studies</subject><subject>Temperature sensors</subject><subject>variational methods</subject><subject>Weather forecasting</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kU1rFEEQhhtRcN14F7w0gpjLbKp3ZvrjGKPZBBKUdfVoU91TAx1mptfumUj-fWbZoODBQ1GHet4XioexNwJWQoA5222231ZrALXSRoMRz9hC1LUuQFbVc7YAYWSx1mb9kr3K-Q5AVLVQC_ZTfCp-nG_5lsYU6B47Hlu-o35PCccpEceh4VdTH5owPvCvKbaho8wvU-w58k2K09AUHzFTw2-DT_E33hPfYhNiTyOlE_aixS7T66e9ZN8vP-8uroqbL5vri_ObwldGj4VyJbrGK6-FUo0D17ZITmKjfCMQjTNSYYnem1qT8g6rtnIASK0vwXlXLtmHY-8-xV8T5dH2IXvqOhwoTtlqDVLVptQzefpfUkglSijNPEv27h_0Lk5pmP-wWlZgDCg5Q3CE5udzTtTafQo9pgcrwB7M2IMZezBjj2bmyPunXsweuzbh4EP-m9Mzp6WaubdHLhDRn3O1lgLqunwE15CXxw</recordid><startdate>20070701</startdate><enddate>20070701</enddate><creator>Hewison, T.J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7SP</scope><scope>F28</scope><scope>7QH</scope></search><sort><creationdate>20070701</creationdate><title>1D-VAR Retrieval of Temperature and Humidity Profiles From a Ground-Based Microwave Radiometer</title><author>Hewison, T.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-7b3abdc7c8177db0bffaeb6ad7cd1aa9b967a3acc958e7cba4f4b00aefc30bcb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied geophysics</topic><topic>Atmospheric measurements</topic><topic>Atmospheric modeling</topic><topic>Channels</topic><topic>Clouds</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Error analysis</topic><topic>Error detection</topic><topic>Exact sciences and technology</topic><topic>Humidity</topic><topic>Infrared sensors</topic><topic>Instruments</topic><topic>Internal geophysics</topic><topic>Mathematical models</topic><topic>Meteorology</topic><topic>Microwave radiometers</topic><topic>Microwave radiometry</topic><topic>Microwave theory and techniques</topic><topic>remote sensing</topic><topic>Retrieval</topic><topic>Sensor phenomena and characterization</topic><topic>Studies</topic><topic>Temperature sensors</topic><topic>variational methods</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hewison, T.J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Aqualine</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hewison, T.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>1D-VAR Retrieval of Temperature and Humidity Profiles From a Ground-Based Microwave Radiometer</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2007-07-01</date><risdate>2007</risdate><volume>45</volume><issue>7</issue><spage>2163</spage><epage>2168</epage><pages>2163-2168</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>A variational method to retrieve profiles of temperature, humidity, and cloud is described, which combines observations from a 12-channel microwave radiometer, an infrared radiometer, and surface sensors with background from shortrange numerical weather prediction (NWP) forecasts in an optimal way, accounting for their error characteristics. An analysis is presented of the error budget of the background and observations, including radiometric, modeling, and representativeness errors. Observation errors of some moisture channels are found to be dominated by representativeness, due to their sensitivity to atmospheric variability on smaller scales than the NWP model grid, whereas channels providing information on temperature in the lowest 1 km are dominated by instrument noise. Profiles of temperature and a novel total water control variable are retrieved from synthetic data using Newtonian iteration. An error analysis shows that these are expected to improve mesoscale NWP, retrieving temperature and humidity profiles up to 4 km with uncertainties of 1 K and 40% and 2.8 and 1.8 degrees of freedom for signal, respectively, albeit with poor vertical resolution. A cloud classification scheme is introduced to address convergence problems and better constrain the retrievals. This Bayesian retrieval method can be extended to incorporate observations from other instruments to form a basis for future integrated profiling systems.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TGRS.2007.898091</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2007-07, Vol.45 (7), p.2163-2168
issn 0196-2892
1558-0644
language eng
recordid cdi_proquest_miscellaneous_1671303930
source IEEE Electronic Library (IEL) Journals
subjects Applied geophysics
Atmospheric measurements
Atmospheric modeling
Channels
Clouds
Earth sciences
Earth, ocean, space
Error analysis
Error detection
Exact sciences and technology
Humidity
Infrared sensors
Instruments
Internal geophysics
Mathematical models
Meteorology
Microwave radiometers
Microwave radiometry
Microwave theory and techniques
remote sensing
Retrieval
Sensor phenomena and characterization
Studies
Temperature sensors
variational methods
Weather forecasting
title 1D-VAR Retrieval of Temperature and Humidity Profiles From a Ground-Based Microwave Radiometer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A11%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=1D-VAR%20Retrieval%20of%20Temperature%20and%20Humidity%20Profiles%20From%20a%20Ground-Based%20Microwave%20Radiometer&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Hewison,%20T.J.&rft.date=2007-07-01&rft.volume=45&rft.issue=7&rft.spage=2163&rft.epage=2168&rft.pages=2163-2168&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2007.898091&rft_dat=%3Cproquest_cross%3E880675938%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c498t-7b3abdc7c8177db0bffaeb6ad7cd1aa9b967a3acc958e7cba4f4b00aefc30bcb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=864099076&rft_id=info:pmid/&rft_ieee_id=4261055&rfr_iscdi=true