Loading…

Cellular Neural Networks With Transient Chaos

A new model of cellular neural networks (CNNs) with transient chaos is proposed by adding negative self-feedbacks into CNNs after transforming the dynamic equation to discrete time via Euler's method. The simulation on the single neuron model shows stable fix points, bifurcation and chaos. Henc...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on circuits and systems. 2, Analog and digital signal processing Analog and digital signal processing, 2007-05, Vol.54 (5), p.440-444
Main Authors: Lipo Wang, Wen Liu, Haixiang Shi, Zurada, J.M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c389t-d5c4d069234b2aa12f52359bf3286daec3940595597b7c4a54a5a23df21494693
cites cdi_FETCH-LOGICAL-c389t-d5c4d069234b2aa12f52359bf3286daec3940595597b7c4a54a5a23df21494693
container_end_page 444
container_issue 5
container_start_page 440
container_title IEEE transactions on circuits and systems. 2, Analog and digital signal processing
container_volume 54
creator Lipo Wang
Wen Liu
Haixiang Shi
Zurada, J.M.
description A new model of cellular neural networks (CNNs) with transient chaos is proposed by adding negative self-feedbacks into CNNs after transforming the dynamic equation to discrete time via Euler's method. The simulation on the single neuron model shows stable fix points, bifurcation and chaos. Hence, this new CNN model has richer and more flexible dynamics, and therefore may possess better capabilities of solving various problems, compared to the conventional CNN with only stable dynamics
doi_str_mv 10.1109/TCSII.2007.892399
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671304602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4182514</ieee_id><sourcerecordid>2544809371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-d5c4d069234b2aa12f52359bf3286daec3940595597b7c4a54a5a23df21494693</originalsourceid><addsrcrecordid>eNqFkU1LxDAQhoMouK7-APFSPIiXrslM0jRHKX4sLHpwxWPItinbtduuSYv4702tePCgMDBzeGbmnXkJOWV0xhhVV8vsaT6fAaVylipApfbIhAmRxigV2x9qrmIpuTwkR95vKAVFESYkzmxd97Vx0YPtnalD6t5b9-qjl6pbR0tnGl_ZpouytWn9MTkoTe3tyXeekufbm2V2Hy8e7-bZ9SLOMVVdXIicFzQJOvgKjGFQCkChViVCmhTG5qg4FUoIJVcy50aEMIBFCYwrniickotx7s61b731nd5WPg9KTWPb3mvkXCLDJICXf4IskQwpTyj8j2IiwscQREDPf6GbtndNuFgrBoDhvcNqNkK5a713ttQ7V22N-9CM6sET_eWJHjzRoyeh52zsqay1PzxnKQjG8RNO7YRq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912233996</pqid></control><display><type>article</type><title>Cellular Neural Networks With Transient Chaos</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Lipo Wang ; Wen Liu ; Haixiang Shi ; Zurada, J.M.</creator><creatorcontrib>Lipo Wang ; Wen Liu ; Haixiang Shi ; Zurada, J.M.</creatorcontrib><description>A new model of cellular neural networks (CNNs) with transient chaos is proposed by adding negative self-feedbacks into CNNs after transforming the dynamic equation to discrete time via Euler's method. The simulation on the single neuron model shows stable fix points, bifurcation and chaos. Hence, this new CNN model has richer and more flexible dynamics, and therefore may possess better capabilities of solving various problems, compared to the conventional CNN with only stable dynamics</description><identifier>ISSN: 1549-7747</identifier><identifier>ISSN: 1057-7130</identifier><identifier>EISSN: 1558-3791</identifier><identifier>DOI: 10.1109/TCSII.2007.892399</identifier><identifier>CODEN: ICSPE5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bifurcation ; Cellular ; Cellular neural networks ; cellular neural networks (CNNs) ; Chaos ; Chaos theory ; Computational modeling ; Computer simulation ; Dynamical systems ; Dynamics ; Hopfield neural networks ; Mathematical analysis ; Neural networks ; Neurons ; Power engineering and energy ; Simulated annealing ; Stochastic processes</subject><ispartof>IEEE transactions on circuits and systems. 2, Analog and digital signal processing, 2007-05, Vol.54 (5), p.440-444</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-d5c4d069234b2aa12f52359bf3286daec3940595597b7c4a54a5a23df21494693</citedby><cites>FETCH-LOGICAL-c389t-d5c4d069234b2aa12f52359bf3286daec3940595597b7c4a54a5a23df21494693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4182514$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids></links><search><creatorcontrib>Lipo Wang</creatorcontrib><creatorcontrib>Wen Liu</creatorcontrib><creatorcontrib>Haixiang Shi</creatorcontrib><creatorcontrib>Zurada, J.M.</creatorcontrib><title>Cellular Neural Networks With Transient Chaos</title><title>IEEE transactions on circuits and systems. 2, Analog and digital signal processing</title><addtitle>TCSII</addtitle><description>A new model of cellular neural networks (CNNs) with transient chaos is proposed by adding negative self-feedbacks into CNNs after transforming the dynamic equation to discrete time via Euler's method. The simulation on the single neuron model shows stable fix points, bifurcation and chaos. Hence, this new CNN model has richer and more flexible dynamics, and therefore may possess better capabilities of solving various problems, compared to the conventional CNN with only stable dynamics</description><subject>Bifurcation</subject><subject>Cellular</subject><subject>Cellular neural networks</subject><subject>cellular neural networks (CNNs)</subject><subject>Chaos</subject><subject>Chaos theory</subject><subject>Computational modeling</subject><subject>Computer simulation</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Hopfield neural networks</subject><subject>Mathematical analysis</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Power engineering and energy</subject><subject>Simulated annealing</subject><subject>Stochastic processes</subject><issn>1549-7747</issn><issn>1057-7130</issn><issn>1558-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkU1LxDAQhoMouK7-APFSPIiXrslM0jRHKX4sLHpwxWPItinbtduuSYv4702tePCgMDBzeGbmnXkJOWV0xhhVV8vsaT6fAaVylipApfbIhAmRxigV2x9qrmIpuTwkR95vKAVFESYkzmxd97Vx0YPtnalD6t5b9-qjl6pbR0tnGl_ZpouytWn9MTkoTe3tyXeekufbm2V2Hy8e7-bZ9SLOMVVdXIicFzQJOvgKjGFQCkChViVCmhTG5qg4FUoIJVcy50aEMIBFCYwrniickotx7s61b731nd5WPg9KTWPb3mvkXCLDJICXf4IskQwpTyj8j2IiwscQREDPf6GbtndNuFgrBoDhvcNqNkK5a713ttQ7V22N-9CM6sET_eWJHjzRoyeh52zsqay1PzxnKQjG8RNO7YRq</recordid><startdate>20070501</startdate><enddate>20070501</enddate><creator>Lipo Wang</creator><creator>Wen Liu</creator><creator>Haixiang Shi</creator><creator>Zurada, J.M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20070501</creationdate><title>Cellular Neural Networks With Transient Chaos</title><author>Lipo Wang ; Wen Liu ; Haixiang Shi ; Zurada, J.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-d5c4d069234b2aa12f52359bf3286daec3940595597b7c4a54a5a23df21494693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Bifurcation</topic><topic>Cellular</topic><topic>Cellular neural networks</topic><topic>cellular neural networks (CNNs)</topic><topic>Chaos</topic><topic>Chaos theory</topic><topic>Computational modeling</topic><topic>Computer simulation</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Hopfield neural networks</topic><topic>Mathematical analysis</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Power engineering and energy</topic><topic>Simulated annealing</topic><topic>Stochastic processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lipo Wang</creatorcontrib><creatorcontrib>Wen Liu</creatorcontrib><creatorcontrib>Haixiang Shi</creatorcontrib><creatorcontrib>Zurada, J.M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on circuits and systems. 2, Analog and digital signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lipo Wang</au><au>Wen Liu</au><au>Haixiang Shi</au><au>Zurada, J.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cellular Neural Networks With Transient Chaos</atitle><jtitle>IEEE transactions on circuits and systems. 2, Analog and digital signal processing</jtitle><stitle>TCSII</stitle><date>2007-05-01</date><risdate>2007</risdate><volume>54</volume><issue>5</issue><spage>440</spage><epage>444</epage><pages>440-444</pages><issn>1549-7747</issn><issn>1057-7130</issn><eissn>1558-3791</eissn><coden>ICSPE5</coden><abstract>A new model of cellular neural networks (CNNs) with transient chaos is proposed by adding negative self-feedbacks into CNNs after transforming the dynamic equation to discrete time via Euler's method. The simulation on the single neuron model shows stable fix points, bifurcation and chaos. Hence, this new CNN model has richer and more flexible dynamics, and therefore may possess better capabilities of solving various problems, compared to the conventional CNN with only stable dynamics</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSII.2007.892399</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1549-7747
ispartof IEEE transactions on circuits and systems. 2, Analog and digital signal processing, 2007-05, Vol.54 (5), p.440-444
issn 1549-7747
1057-7130
1558-3791
language eng
recordid cdi_proquest_miscellaneous_1671304602
source IEEE Electronic Library (IEL) Journals
subjects Bifurcation
Cellular
Cellular neural networks
cellular neural networks (CNNs)
Chaos
Chaos theory
Computational modeling
Computer simulation
Dynamical systems
Dynamics
Hopfield neural networks
Mathematical analysis
Neural networks
Neurons
Power engineering and energy
Simulated annealing
Stochastic processes
title Cellular Neural Networks With Transient Chaos
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T13%3A45%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cellular%20Neural%20Networks%20With%20Transient%20Chaos&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%202,%20Analog%20and%20digital%20signal%20processing&rft.au=Lipo%20Wang&rft.date=2007-05-01&rft.volume=54&rft.issue=5&rft.spage=440&rft.epage=444&rft.pages=440-444&rft.issn=1549-7747&rft.eissn=1558-3791&rft.coden=ICSPE5&rft_id=info:doi/10.1109/TCSII.2007.892399&rft_dat=%3Cproquest_ieee_%3E2544809371%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c389t-d5c4d069234b2aa12f52359bf3286daec3940595597b7c4a54a5a23df21494693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=912233996&rft_id=info:pmid/&rft_ieee_id=4182514&rfr_iscdi=true