Loading…
Cellular Neural Networks With Transient Chaos
A new model of cellular neural networks (CNNs) with transient chaos is proposed by adding negative self-feedbacks into CNNs after transforming the dynamic equation to discrete time via Euler's method. The simulation on the single neuron model shows stable fix points, bifurcation and chaos. Henc...
Saved in:
Published in: | IEEE transactions on circuits and systems. 2, Analog and digital signal processing Analog and digital signal processing, 2007-05, Vol.54 (5), p.440-444 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c389t-d5c4d069234b2aa12f52359bf3286daec3940595597b7c4a54a5a23df21494693 |
---|---|
cites | cdi_FETCH-LOGICAL-c389t-d5c4d069234b2aa12f52359bf3286daec3940595597b7c4a54a5a23df21494693 |
container_end_page | 444 |
container_issue | 5 |
container_start_page | 440 |
container_title | IEEE transactions on circuits and systems. 2, Analog and digital signal processing |
container_volume | 54 |
creator | Lipo Wang Wen Liu Haixiang Shi Zurada, J.M. |
description | A new model of cellular neural networks (CNNs) with transient chaos is proposed by adding negative self-feedbacks into CNNs after transforming the dynamic equation to discrete time via Euler's method. The simulation on the single neuron model shows stable fix points, bifurcation and chaos. Hence, this new CNN model has richer and more flexible dynamics, and therefore may possess better capabilities of solving various problems, compared to the conventional CNN with only stable dynamics |
doi_str_mv | 10.1109/TCSII.2007.892399 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671304602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4182514</ieee_id><sourcerecordid>2544809371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-d5c4d069234b2aa12f52359bf3286daec3940595597b7c4a54a5a23df21494693</originalsourceid><addsrcrecordid>eNqFkU1LxDAQhoMouK7-APFSPIiXrslM0jRHKX4sLHpwxWPItinbtduuSYv4702tePCgMDBzeGbmnXkJOWV0xhhVV8vsaT6fAaVylipApfbIhAmRxigV2x9qrmIpuTwkR95vKAVFESYkzmxd97Vx0YPtnalD6t5b9-qjl6pbR0tnGl_ZpouytWn9MTkoTe3tyXeekufbm2V2Hy8e7-bZ9SLOMVVdXIicFzQJOvgKjGFQCkChViVCmhTG5qg4FUoIJVcy50aEMIBFCYwrniickotx7s61b731nd5WPg9KTWPb3mvkXCLDJICXf4IskQwpTyj8j2IiwscQREDPf6GbtndNuFgrBoDhvcNqNkK5a713ttQ7V22N-9CM6sET_eWJHjzRoyeh52zsqay1PzxnKQjG8RNO7YRq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912233996</pqid></control><display><type>article</type><title>Cellular Neural Networks With Transient Chaos</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Lipo Wang ; Wen Liu ; Haixiang Shi ; Zurada, J.M.</creator><creatorcontrib>Lipo Wang ; Wen Liu ; Haixiang Shi ; Zurada, J.M.</creatorcontrib><description>A new model of cellular neural networks (CNNs) with transient chaos is proposed by adding negative self-feedbacks into CNNs after transforming the dynamic equation to discrete time via Euler's method. The simulation on the single neuron model shows stable fix points, bifurcation and chaos. Hence, this new CNN model has richer and more flexible dynamics, and therefore may possess better capabilities of solving various problems, compared to the conventional CNN with only stable dynamics</description><identifier>ISSN: 1549-7747</identifier><identifier>ISSN: 1057-7130</identifier><identifier>EISSN: 1558-3791</identifier><identifier>DOI: 10.1109/TCSII.2007.892399</identifier><identifier>CODEN: ICSPE5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bifurcation ; Cellular ; Cellular neural networks ; cellular neural networks (CNNs) ; Chaos ; Chaos theory ; Computational modeling ; Computer simulation ; Dynamical systems ; Dynamics ; Hopfield neural networks ; Mathematical analysis ; Neural networks ; Neurons ; Power engineering and energy ; Simulated annealing ; Stochastic processes</subject><ispartof>IEEE transactions on circuits and systems. 2, Analog and digital signal processing, 2007-05, Vol.54 (5), p.440-444</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-d5c4d069234b2aa12f52359bf3286daec3940595597b7c4a54a5a23df21494693</citedby><cites>FETCH-LOGICAL-c389t-d5c4d069234b2aa12f52359bf3286daec3940595597b7c4a54a5a23df21494693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4182514$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids></links><search><creatorcontrib>Lipo Wang</creatorcontrib><creatorcontrib>Wen Liu</creatorcontrib><creatorcontrib>Haixiang Shi</creatorcontrib><creatorcontrib>Zurada, J.M.</creatorcontrib><title>Cellular Neural Networks With Transient Chaos</title><title>IEEE transactions on circuits and systems. 2, Analog and digital signal processing</title><addtitle>TCSII</addtitle><description>A new model of cellular neural networks (CNNs) with transient chaos is proposed by adding negative self-feedbacks into CNNs after transforming the dynamic equation to discrete time via Euler's method. The simulation on the single neuron model shows stable fix points, bifurcation and chaos. Hence, this new CNN model has richer and more flexible dynamics, and therefore may possess better capabilities of solving various problems, compared to the conventional CNN with only stable dynamics</description><subject>Bifurcation</subject><subject>Cellular</subject><subject>Cellular neural networks</subject><subject>cellular neural networks (CNNs)</subject><subject>Chaos</subject><subject>Chaos theory</subject><subject>Computational modeling</subject><subject>Computer simulation</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Hopfield neural networks</subject><subject>Mathematical analysis</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Power engineering and energy</subject><subject>Simulated annealing</subject><subject>Stochastic processes</subject><issn>1549-7747</issn><issn>1057-7130</issn><issn>1558-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkU1LxDAQhoMouK7-APFSPIiXrslM0jRHKX4sLHpwxWPItinbtduuSYv4702tePCgMDBzeGbmnXkJOWV0xhhVV8vsaT6fAaVylipApfbIhAmRxigV2x9qrmIpuTwkR95vKAVFESYkzmxd97Vx0YPtnalD6t5b9-qjl6pbR0tnGl_ZpouytWn9MTkoTe3tyXeekufbm2V2Hy8e7-bZ9SLOMVVdXIicFzQJOvgKjGFQCkChViVCmhTG5qg4FUoIJVcy50aEMIBFCYwrniickotx7s61b731nd5WPg9KTWPb3mvkXCLDJICXf4IskQwpTyj8j2IiwscQREDPf6GbtndNuFgrBoDhvcNqNkK5a713ttQ7V22N-9CM6sET_eWJHjzRoyeh52zsqay1PzxnKQjG8RNO7YRq</recordid><startdate>20070501</startdate><enddate>20070501</enddate><creator>Lipo Wang</creator><creator>Wen Liu</creator><creator>Haixiang Shi</creator><creator>Zurada, J.M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20070501</creationdate><title>Cellular Neural Networks With Transient Chaos</title><author>Lipo Wang ; Wen Liu ; Haixiang Shi ; Zurada, J.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-d5c4d069234b2aa12f52359bf3286daec3940595597b7c4a54a5a23df21494693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Bifurcation</topic><topic>Cellular</topic><topic>Cellular neural networks</topic><topic>cellular neural networks (CNNs)</topic><topic>Chaos</topic><topic>Chaos theory</topic><topic>Computational modeling</topic><topic>Computer simulation</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Hopfield neural networks</topic><topic>Mathematical analysis</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Power engineering and energy</topic><topic>Simulated annealing</topic><topic>Stochastic processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lipo Wang</creatorcontrib><creatorcontrib>Wen Liu</creatorcontrib><creatorcontrib>Haixiang Shi</creatorcontrib><creatorcontrib>Zurada, J.M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on circuits and systems. 2, Analog and digital signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lipo Wang</au><au>Wen Liu</au><au>Haixiang Shi</au><au>Zurada, J.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cellular Neural Networks With Transient Chaos</atitle><jtitle>IEEE transactions on circuits and systems. 2, Analog and digital signal processing</jtitle><stitle>TCSII</stitle><date>2007-05-01</date><risdate>2007</risdate><volume>54</volume><issue>5</issue><spage>440</spage><epage>444</epage><pages>440-444</pages><issn>1549-7747</issn><issn>1057-7130</issn><eissn>1558-3791</eissn><coden>ICSPE5</coden><abstract>A new model of cellular neural networks (CNNs) with transient chaos is proposed by adding negative self-feedbacks into CNNs after transforming the dynamic equation to discrete time via Euler's method. The simulation on the single neuron model shows stable fix points, bifurcation and chaos. Hence, this new CNN model has richer and more flexible dynamics, and therefore may possess better capabilities of solving various problems, compared to the conventional CNN with only stable dynamics</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSII.2007.892399</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-7747 |
ispartof | IEEE transactions on circuits and systems. 2, Analog and digital signal processing, 2007-05, Vol.54 (5), p.440-444 |
issn | 1549-7747 1057-7130 1558-3791 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671304602 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Bifurcation Cellular Cellular neural networks cellular neural networks (CNNs) Chaos Chaos theory Computational modeling Computer simulation Dynamical systems Dynamics Hopfield neural networks Mathematical analysis Neural networks Neurons Power engineering and energy Simulated annealing Stochastic processes |
title | Cellular Neural Networks With Transient Chaos |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T13%3A45%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cellular%20Neural%20Networks%20With%20Transient%20Chaos&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%202,%20Analog%20and%20digital%20signal%20processing&rft.au=Lipo%20Wang&rft.date=2007-05-01&rft.volume=54&rft.issue=5&rft.spage=440&rft.epage=444&rft.pages=440-444&rft.issn=1549-7747&rft.eissn=1558-3791&rft.coden=ICSPE5&rft_id=info:doi/10.1109/TCSII.2007.892399&rft_dat=%3Cproquest_ieee_%3E2544809371%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c389t-d5c4d069234b2aa12f52359bf3286daec3940595597b7c4a54a5a23df21494693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=912233996&rft_id=info:pmid/&rft_ieee_id=4182514&rfr_iscdi=true |