Loading…

Automated 3-D PDM construction from segmented images using deformable models

In recent years, several methods have been proposed for constructing statistical shape models to aid image analysis tasks by providing a priori knowledge. Examples include principal component analysis of manually or semiautomatically placed corresponding landmarks on the learning shapes [point distr...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on medical imaging 2003-08, Vol.22 (8), p.1005-1013
Main Authors: Kaus, M.R., Pekar, V., Lorenz, C., Truyen, R., Lobregt, S., Weese, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c466t-4bb870b7d7eb39dade7f140a48b73f664aad894a337be3888b858bd29a20de1d3
cites cdi_FETCH-LOGICAL-c466t-4bb870b7d7eb39dade7f140a48b73f664aad894a337be3888b858bd29a20de1d3
container_end_page 1013
container_issue 8
container_start_page 1005
container_title IEEE transactions on medical imaging
container_volume 22
creator Kaus, M.R.
Pekar, V.
Lorenz, C.
Truyen, R.
Lobregt, S.
Weese, J.
description In recent years, several methods have been proposed for constructing statistical shape models to aid image analysis tasks by providing a priori knowledge. Examples include principal component analysis of manually or semiautomatically placed corresponding landmarks on the learning shapes [point distribution models (PDMs)], which is time consuming and subjective. However, automatically establishing surface correspondences continues to be a difficult problem. This paper presents a novel method for the automated construction of three-dimensional PDM from segmented images. Corresponding surface landmarks are established by adapting a triangulated learning shape to segmented volumetric images of the remaining shapes. The adaptation is based on a novel deformable model technique. We illustrate our approach using computed tomography data of the vertebra and the femur. We demonstrate that our method accurately represents and predicts shapes.
doi_str_mv 10.1109/TMI.2003.815864
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671307208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1216224</ieee_id><sourcerecordid>1671307208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-4bb870b7d7eb39dade7f140a48b73f664aad894a337be3888b858bd29a20de1d3</originalsourceid><addsrcrecordid>eNqF0c9LHDEUB_BQlLrVnj0IMhRavcz68jtzFG2rsGIPFrwNyeTNMjIz0WTm0P--WXbB4sGeAuHzvjzel5BjCktKobp4uLtdMgC-NFQaJT6QBZXSlEyKxz2yAKZNCaDYAfmU0hMAFRKqj-SAsir_SrEgq8t5CoOd0Be8vC5-Xd8VTRjTFOdm6sJYtDEMRcL1gOPGdINdYyrm1I3rwmMb4mBdj8UQPPbpiOy3tk_4efcekt8_vj9c3ZSr-5-3V5ershFKTaVwzmhw2mt0vPLWo26pACuM07xVSljrTSUs59ohN8Y4I43zrLIMPFLPD8nZNvc5hpcZ01QPXWqw7-2IYU61MRyEZEJn-e1dqbnkBvj_ITOKq0qwDM_fhVRpykEzMJl-eUOfwhzHfJm8oWBGaCoyutiiJoaUIrb1c8xXjn9qCvWm4zp3XG86rrcd54nTXezsBvSvfldqBl93wKbG9m20Y9OlVycBmKg2-51sXYeI_8RQxZjgfwGX87VJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884284714</pqid></control><display><type>article</type><title>Automated 3-D PDM construction from segmented images using deformable models</title><source>IEEE Xplore (Online service)</source><creator>Kaus, M.R. ; Pekar, V. ; Lorenz, C. ; Truyen, R. ; Lobregt, S. ; Weese, J.</creator><creatorcontrib>Kaus, M.R. ; Pekar, V. ; Lorenz, C. ; Truyen, R. ; Lobregt, S. ; Weese, J.</creatorcontrib><description>In recent years, several methods have been proposed for constructing statistical shape models to aid image analysis tasks by providing a priori knowledge. Examples include principal component analysis of manually or semiautomatically placed corresponding landmarks on the learning shapes [point distribution models (PDMs)], which is time consuming and subjective. However, automatically establishing surface correspondences continues to be a difficult problem. This paper presents a novel method for the automated construction of three-dimensional PDM from segmented images. Corresponding surface landmarks are established by adapting a triangulated learning shape to segmented volumetric images of the remaining shapes. The adaptation is based on a novel deformable model technique. We illustrate our approach using computed tomography data of the vertebra and the femur. We demonstrate that our method accurately represents and predicts shapes.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2003.815864</identifier><identifier>PMID: 12906254</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Biological and medical sciences ; Computed tomography ; Construction ; Deformable models ; Deformation ; Epiphyses, Slipped - diagnostic imaging ; Femur - diagnostic imaging ; Formability ; Humans ; Image analysis ; Image processing ; Image recognition ; Image segmentation ; Imaging, Three-Dimensional - methods ; Landmarks ; Learning ; Lumbar Vertebrae - diagnostic imaging ; Mathematical models ; Medical sciences ; Models, Biological ; Pattern Recognition, Automated ; Principal component analysis ; Product data management ; Radiographic Image Enhancement - methods ; Radiographic Image Interpretation, Computer-Assisted - methods ; Reproducibility of Results ; Robustness ; Sensitivity and Specificity ; Shape ; Statistical analysis ; Tomography, X-Ray Computed - methods</subject><ispartof>IEEE transactions on medical imaging, 2003-08, Vol.22 (8), p.1005-1013</ispartof><rights>2003 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-4bb870b7d7eb39dade7f140a48b73f664aad894a337be3888b858bd29a20de1d3</citedby><cites>FETCH-LOGICAL-c466t-4bb870b7d7eb39dade7f140a48b73f664aad894a337be3888b858bd29a20de1d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1216224$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15002498$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12906254$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kaus, M.R.</creatorcontrib><creatorcontrib>Pekar, V.</creatorcontrib><creatorcontrib>Lorenz, C.</creatorcontrib><creatorcontrib>Truyen, R.</creatorcontrib><creatorcontrib>Lobregt, S.</creatorcontrib><creatorcontrib>Weese, J.</creatorcontrib><title>Automated 3-D PDM construction from segmented images using deformable models</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>In recent years, several methods have been proposed for constructing statistical shape models to aid image analysis tasks by providing a priori knowledge. Examples include principal component analysis of manually or semiautomatically placed corresponding landmarks on the learning shapes [point distribution models (PDMs)], which is time consuming and subjective. However, automatically establishing surface correspondences continues to be a difficult problem. This paper presents a novel method for the automated construction of three-dimensional PDM from segmented images. Corresponding surface landmarks are established by adapting a triangulated learning shape to segmented volumetric images of the remaining shapes. The adaptation is based on a novel deformable model technique. We illustrate our approach using computed tomography data of the vertebra and the femur. We demonstrate that our method accurately represents and predicts shapes.</description><subject>Algorithms</subject><subject>Biological and medical sciences</subject><subject>Computed tomography</subject><subject>Construction</subject><subject>Deformable models</subject><subject>Deformation</subject><subject>Epiphyses, Slipped - diagnostic imaging</subject><subject>Femur - diagnostic imaging</subject><subject>Formability</subject><subject>Humans</subject><subject>Image analysis</subject><subject>Image processing</subject><subject>Image recognition</subject><subject>Image segmentation</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Landmarks</subject><subject>Learning</subject><subject>Lumbar Vertebrae - diagnostic imaging</subject><subject>Mathematical models</subject><subject>Medical sciences</subject><subject>Models, Biological</subject><subject>Pattern Recognition, Automated</subject><subject>Principal component analysis</subject><subject>Product data management</subject><subject>Radiographic Image Enhancement - methods</subject><subject>Radiographic Image Interpretation, Computer-Assisted - methods</subject><subject>Reproducibility of Results</subject><subject>Robustness</subject><subject>Sensitivity and Specificity</subject><subject>Shape</subject><subject>Statistical analysis</subject><subject>Tomography, X-Ray Computed - methods</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqF0c9LHDEUB_BQlLrVnj0IMhRavcz68jtzFG2rsGIPFrwNyeTNMjIz0WTm0P--WXbB4sGeAuHzvjzel5BjCktKobp4uLtdMgC-NFQaJT6QBZXSlEyKxz2yAKZNCaDYAfmU0hMAFRKqj-SAsir_SrEgq8t5CoOd0Be8vC5-Xd8VTRjTFOdm6sJYtDEMRcL1gOPGdINdYyrm1I3rwmMb4mBdj8UQPPbpiOy3tk_4efcekt8_vj9c3ZSr-5-3V5ershFKTaVwzmhw2mt0vPLWo26pACuM07xVSljrTSUs59ohN8Y4I43zrLIMPFLPD8nZNvc5hpcZ01QPXWqw7-2IYU61MRyEZEJn-e1dqbnkBvj_ITOKq0qwDM_fhVRpykEzMJl-eUOfwhzHfJm8oWBGaCoyutiiJoaUIrb1c8xXjn9qCvWm4zp3XG86rrcd54nTXezsBvSvfldqBl93wKbG9m20Y9OlVycBmKg2-51sXYeI_8RQxZjgfwGX87VJ</recordid><startdate>20030801</startdate><enddate>20030801</enddate><creator>Kaus, M.R.</creator><creator>Pekar, V.</creator><creator>Lorenz, C.</creator><creator>Truyen, R.</creator><creator>Lobregt, S.</creator><creator>Weese, J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20030801</creationdate><title>Automated 3-D PDM construction from segmented images using deformable models</title><author>Kaus, M.R. ; Pekar, V. ; Lorenz, C. ; Truyen, R. ; Lobregt, S. ; Weese, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-4bb870b7d7eb39dade7f140a48b73f664aad894a337be3888b858bd29a20de1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithms</topic><topic>Biological and medical sciences</topic><topic>Computed tomography</topic><topic>Construction</topic><topic>Deformable models</topic><topic>Deformation</topic><topic>Epiphyses, Slipped - diagnostic imaging</topic><topic>Femur - diagnostic imaging</topic><topic>Formability</topic><topic>Humans</topic><topic>Image analysis</topic><topic>Image processing</topic><topic>Image recognition</topic><topic>Image segmentation</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Landmarks</topic><topic>Learning</topic><topic>Lumbar Vertebrae - diagnostic imaging</topic><topic>Mathematical models</topic><topic>Medical sciences</topic><topic>Models, Biological</topic><topic>Pattern Recognition, Automated</topic><topic>Principal component analysis</topic><topic>Product data management</topic><topic>Radiographic Image Enhancement - methods</topic><topic>Radiographic Image Interpretation, Computer-Assisted - methods</topic><topic>Reproducibility of Results</topic><topic>Robustness</topic><topic>Sensitivity and Specificity</topic><topic>Shape</topic><topic>Statistical analysis</topic><topic>Tomography, X-Ray Computed - methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Kaus, M.R.</creatorcontrib><creatorcontrib>Pekar, V.</creatorcontrib><creatorcontrib>Lorenz, C.</creatorcontrib><creatorcontrib>Truyen, R.</creatorcontrib><creatorcontrib>Lobregt, S.</creatorcontrib><creatorcontrib>Weese, J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaus, M.R.</au><au>Pekar, V.</au><au>Lorenz, C.</au><au>Truyen, R.</au><au>Lobregt, S.</au><au>Weese, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated 3-D PDM construction from segmented images using deformable models</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2003-08-01</date><risdate>2003</risdate><volume>22</volume><issue>8</issue><spage>1005</spage><epage>1013</epage><pages>1005-1013</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>In recent years, several methods have been proposed for constructing statistical shape models to aid image analysis tasks by providing a priori knowledge. Examples include principal component analysis of manually or semiautomatically placed corresponding landmarks on the learning shapes [point distribution models (PDMs)], which is time consuming and subjective. However, automatically establishing surface correspondences continues to be a difficult problem. This paper presents a novel method for the automated construction of three-dimensional PDM from segmented images. Corresponding surface landmarks are established by adapting a triangulated learning shape to segmented volumetric images of the remaining shapes. The adaptation is based on a novel deformable model technique. We illustrate our approach using computed tomography data of the vertebra and the femur. We demonstrate that our method accurately represents and predicts shapes.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>12906254</pmid><doi>10.1109/TMI.2003.815864</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2003-08, Vol.22 (8), p.1005-1013
issn 0278-0062
1558-254X
language eng
recordid cdi_proquest_miscellaneous_1671307208
source IEEE Xplore (Online service)
subjects Algorithms
Biological and medical sciences
Computed tomography
Construction
Deformable models
Deformation
Epiphyses, Slipped - diagnostic imaging
Femur - diagnostic imaging
Formability
Humans
Image analysis
Image processing
Image recognition
Image segmentation
Imaging, Three-Dimensional - methods
Landmarks
Learning
Lumbar Vertebrae - diagnostic imaging
Mathematical models
Medical sciences
Models, Biological
Pattern Recognition, Automated
Principal component analysis
Product data management
Radiographic Image Enhancement - methods
Radiographic Image Interpretation, Computer-Assisted - methods
Reproducibility of Results
Robustness
Sensitivity and Specificity
Shape
Statistical analysis
Tomography, X-Ray Computed - methods
title Automated 3-D PDM construction from segmented images using deformable models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A17%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%203-D%20PDM%20construction%20from%20segmented%20images%20using%20deformable%20models&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Kaus,%20M.R.&rft.date=2003-08-01&rft.volume=22&rft.issue=8&rft.spage=1005&rft.epage=1013&rft.pages=1005-1013&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2003.815864&rft_dat=%3Cproquest_pubme%3E1671307208%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c466t-4bb870b7d7eb39dade7f140a48b73f664aad894a337be3888b858bd29a20de1d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=884284714&rft_id=info:pmid/12906254&rft_ieee_id=1216224&rfr_iscdi=true