Loading…
Automated 3-D PDM construction from segmented images using deformable models
In recent years, several methods have been proposed for constructing statistical shape models to aid image analysis tasks by providing a priori knowledge. Examples include principal component analysis of manually or semiautomatically placed corresponding landmarks on the learning shapes [point distr...
Saved in:
Published in: | IEEE transactions on medical imaging 2003-08, Vol.22 (8), p.1005-1013 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c466t-4bb870b7d7eb39dade7f140a48b73f664aad894a337be3888b858bd29a20de1d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c466t-4bb870b7d7eb39dade7f140a48b73f664aad894a337be3888b858bd29a20de1d3 |
container_end_page | 1013 |
container_issue | 8 |
container_start_page | 1005 |
container_title | IEEE transactions on medical imaging |
container_volume | 22 |
creator | Kaus, M.R. Pekar, V. Lorenz, C. Truyen, R. Lobregt, S. Weese, J. |
description | In recent years, several methods have been proposed for constructing statistical shape models to aid image analysis tasks by providing a priori knowledge. Examples include principal component analysis of manually or semiautomatically placed corresponding landmarks on the learning shapes [point distribution models (PDMs)], which is time consuming and subjective. However, automatically establishing surface correspondences continues to be a difficult problem. This paper presents a novel method for the automated construction of three-dimensional PDM from segmented images. Corresponding surface landmarks are established by adapting a triangulated learning shape to segmented volumetric images of the remaining shapes. The adaptation is based on a novel deformable model technique. We illustrate our approach using computed tomography data of the vertebra and the femur. We demonstrate that our method accurately represents and predicts shapes. |
doi_str_mv | 10.1109/TMI.2003.815864 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671307208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1216224</ieee_id><sourcerecordid>1671307208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-4bb870b7d7eb39dade7f140a48b73f664aad894a337be3888b858bd29a20de1d3</originalsourceid><addsrcrecordid>eNqF0c9LHDEUB_BQlLrVnj0IMhRavcz68jtzFG2rsGIPFrwNyeTNMjIz0WTm0P--WXbB4sGeAuHzvjzel5BjCktKobp4uLtdMgC-NFQaJT6QBZXSlEyKxz2yAKZNCaDYAfmU0hMAFRKqj-SAsir_SrEgq8t5CoOd0Be8vC5-Xd8VTRjTFOdm6sJYtDEMRcL1gOPGdINdYyrm1I3rwmMb4mBdj8UQPPbpiOy3tk_4efcekt8_vj9c3ZSr-5-3V5ershFKTaVwzmhw2mt0vPLWo26pACuM07xVSljrTSUs59ohN8Y4I43zrLIMPFLPD8nZNvc5hpcZ01QPXWqw7-2IYU61MRyEZEJn-e1dqbnkBvj_ITOKq0qwDM_fhVRpykEzMJl-eUOfwhzHfJm8oWBGaCoyutiiJoaUIrb1c8xXjn9qCvWm4zp3XG86rrcd54nTXezsBvSvfldqBl93wKbG9m20Y9OlVycBmKg2-51sXYeI_8RQxZjgfwGX87VJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884284714</pqid></control><display><type>article</type><title>Automated 3-D PDM construction from segmented images using deformable models</title><source>IEEE Xplore (Online service)</source><creator>Kaus, M.R. ; Pekar, V. ; Lorenz, C. ; Truyen, R. ; Lobregt, S. ; Weese, J.</creator><creatorcontrib>Kaus, M.R. ; Pekar, V. ; Lorenz, C. ; Truyen, R. ; Lobregt, S. ; Weese, J.</creatorcontrib><description>In recent years, several methods have been proposed for constructing statistical shape models to aid image analysis tasks by providing a priori knowledge. Examples include principal component analysis of manually or semiautomatically placed corresponding landmarks on the learning shapes [point distribution models (PDMs)], which is time consuming and subjective. However, automatically establishing surface correspondences continues to be a difficult problem. This paper presents a novel method for the automated construction of three-dimensional PDM from segmented images. Corresponding surface landmarks are established by adapting a triangulated learning shape to segmented volumetric images of the remaining shapes. The adaptation is based on a novel deformable model technique. We illustrate our approach using computed tomography data of the vertebra and the femur. We demonstrate that our method accurately represents and predicts shapes.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2003.815864</identifier><identifier>PMID: 12906254</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Biological and medical sciences ; Computed tomography ; Construction ; Deformable models ; Deformation ; Epiphyses, Slipped - diagnostic imaging ; Femur - diagnostic imaging ; Formability ; Humans ; Image analysis ; Image processing ; Image recognition ; Image segmentation ; Imaging, Three-Dimensional - methods ; Landmarks ; Learning ; Lumbar Vertebrae - diagnostic imaging ; Mathematical models ; Medical sciences ; Models, Biological ; Pattern Recognition, Automated ; Principal component analysis ; Product data management ; Radiographic Image Enhancement - methods ; Radiographic Image Interpretation, Computer-Assisted - methods ; Reproducibility of Results ; Robustness ; Sensitivity and Specificity ; Shape ; Statistical analysis ; Tomography, X-Ray Computed - methods</subject><ispartof>IEEE transactions on medical imaging, 2003-08, Vol.22 (8), p.1005-1013</ispartof><rights>2003 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-4bb870b7d7eb39dade7f140a48b73f664aad894a337be3888b858bd29a20de1d3</citedby><cites>FETCH-LOGICAL-c466t-4bb870b7d7eb39dade7f140a48b73f664aad894a337be3888b858bd29a20de1d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1216224$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15002498$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12906254$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kaus, M.R.</creatorcontrib><creatorcontrib>Pekar, V.</creatorcontrib><creatorcontrib>Lorenz, C.</creatorcontrib><creatorcontrib>Truyen, R.</creatorcontrib><creatorcontrib>Lobregt, S.</creatorcontrib><creatorcontrib>Weese, J.</creatorcontrib><title>Automated 3-D PDM construction from segmented images using deformable models</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>In recent years, several methods have been proposed for constructing statistical shape models to aid image analysis tasks by providing a priori knowledge. Examples include principal component analysis of manually or semiautomatically placed corresponding landmarks on the learning shapes [point distribution models (PDMs)], which is time consuming and subjective. However, automatically establishing surface correspondences continues to be a difficult problem. This paper presents a novel method for the automated construction of three-dimensional PDM from segmented images. Corresponding surface landmarks are established by adapting a triangulated learning shape to segmented volumetric images of the remaining shapes. The adaptation is based on a novel deformable model technique. We illustrate our approach using computed tomography data of the vertebra and the femur. We demonstrate that our method accurately represents and predicts shapes.</description><subject>Algorithms</subject><subject>Biological and medical sciences</subject><subject>Computed tomography</subject><subject>Construction</subject><subject>Deformable models</subject><subject>Deformation</subject><subject>Epiphyses, Slipped - diagnostic imaging</subject><subject>Femur - diagnostic imaging</subject><subject>Formability</subject><subject>Humans</subject><subject>Image analysis</subject><subject>Image processing</subject><subject>Image recognition</subject><subject>Image segmentation</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Landmarks</subject><subject>Learning</subject><subject>Lumbar Vertebrae - diagnostic imaging</subject><subject>Mathematical models</subject><subject>Medical sciences</subject><subject>Models, Biological</subject><subject>Pattern Recognition, Automated</subject><subject>Principal component analysis</subject><subject>Product data management</subject><subject>Radiographic Image Enhancement - methods</subject><subject>Radiographic Image Interpretation, Computer-Assisted - methods</subject><subject>Reproducibility of Results</subject><subject>Robustness</subject><subject>Sensitivity and Specificity</subject><subject>Shape</subject><subject>Statistical analysis</subject><subject>Tomography, X-Ray Computed - methods</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqF0c9LHDEUB_BQlLrVnj0IMhRavcz68jtzFG2rsGIPFrwNyeTNMjIz0WTm0P--WXbB4sGeAuHzvjzel5BjCktKobp4uLtdMgC-NFQaJT6QBZXSlEyKxz2yAKZNCaDYAfmU0hMAFRKqj-SAsir_SrEgq8t5CoOd0Be8vC5-Xd8VTRjTFOdm6sJYtDEMRcL1gOPGdINdYyrm1I3rwmMb4mBdj8UQPPbpiOy3tk_4efcekt8_vj9c3ZSr-5-3V5ershFKTaVwzmhw2mt0vPLWo26pACuM07xVSljrTSUs59ohN8Y4I43zrLIMPFLPD8nZNvc5hpcZ01QPXWqw7-2IYU61MRyEZEJn-e1dqbnkBvj_ITOKq0qwDM_fhVRpykEzMJl-eUOfwhzHfJm8oWBGaCoyutiiJoaUIrb1c8xXjn9qCvWm4zp3XG86rrcd54nTXezsBvSvfldqBl93wKbG9m20Y9OlVycBmKg2-51sXYeI_8RQxZjgfwGX87VJ</recordid><startdate>20030801</startdate><enddate>20030801</enddate><creator>Kaus, M.R.</creator><creator>Pekar, V.</creator><creator>Lorenz, C.</creator><creator>Truyen, R.</creator><creator>Lobregt, S.</creator><creator>Weese, J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20030801</creationdate><title>Automated 3-D PDM construction from segmented images using deformable models</title><author>Kaus, M.R. ; Pekar, V. ; Lorenz, C. ; Truyen, R. ; Lobregt, S. ; Weese, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-4bb870b7d7eb39dade7f140a48b73f664aad894a337be3888b858bd29a20de1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithms</topic><topic>Biological and medical sciences</topic><topic>Computed tomography</topic><topic>Construction</topic><topic>Deformable models</topic><topic>Deformation</topic><topic>Epiphyses, Slipped - diagnostic imaging</topic><topic>Femur - diagnostic imaging</topic><topic>Formability</topic><topic>Humans</topic><topic>Image analysis</topic><topic>Image processing</topic><topic>Image recognition</topic><topic>Image segmentation</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Landmarks</topic><topic>Learning</topic><topic>Lumbar Vertebrae - diagnostic imaging</topic><topic>Mathematical models</topic><topic>Medical sciences</topic><topic>Models, Biological</topic><topic>Pattern Recognition, Automated</topic><topic>Principal component analysis</topic><topic>Product data management</topic><topic>Radiographic Image Enhancement - methods</topic><topic>Radiographic Image Interpretation, Computer-Assisted - methods</topic><topic>Reproducibility of Results</topic><topic>Robustness</topic><topic>Sensitivity and Specificity</topic><topic>Shape</topic><topic>Statistical analysis</topic><topic>Tomography, X-Ray Computed - methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Kaus, M.R.</creatorcontrib><creatorcontrib>Pekar, V.</creatorcontrib><creatorcontrib>Lorenz, C.</creatorcontrib><creatorcontrib>Truyen, R.</creatorcontrib><creatorcontrib>Lobregt, S.</creatorcontrib><creatorcontrib>Weese, J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaus, M.R.</au><au>Pekar, V.</au><au>Lorenz, C.</au><au>Truyen, R.</au><au>Lobregt, S.</au><au>Weese, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated 3-D PDM construction from segmented images using deformable models</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2003-08-01</date><risdate>2003</risdate><volume>22</volume><issue>8</issue><spage>1005</spage><epage>1013</epage><pages>1005-1013</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>In recent years, several methods have been proposed for constructing statistical shape models to aid image analysis tasks by providing a priori knowledge. Examples include principal component analysis of manually or semiautomatically placed corresponding landmarks on the learning shapes [point distribution models (PDMs)], which is time consuming and subjective. However, automatically establishing surface correspondences continues to be a difficult problem. This paper presents a novel method for the automated construction of three-dimensional PDM from segmented images. Corresponding surface landmarks are established by adapting a triangulated learning shape to segmented volumetric images of the remaining shapes. The adaptation is based on a novel deformable model technique. We illustrate our approach using computed tomography data of the vertebra and the femur. We demonstrate that our method accurately represents and predicts shapes.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>12906254</pmid><doi>10.1109/TMI.2003.815864</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-0062 |
ispartof | IEEE transactions on medical imaging, 2003-08, Vol.22 (8), p.1005-1013 |
issn | 0278-0062 1558-254X |
language | eng |
recordid | cdi_proquest_miscellaneous_1671307208 |
source | IEEE Xplore (Online service) |
subjects | Algorithms Biological and medical sciences Computed tomography Construction Deformable models Deformation Epiphyses, Slipped - diagnostic imaging Femur - diagnostic imaging Formability Humans Image analysis Image processing Image recognition Image segmentation Imaging, Three-Dimensional - methods Landmarks Learning Lumbar Vertebrae - diagnostic imaging Mathematical models Medical sciences Models, Biological Pattern Recognition, Automated Principal component analysis Product data management Radiographic Image Enhancement - methods Radiographic Image Interpretation, Computer-Assisted - methods Reproducibility of Results Robustness Sensitivity and Specificity Shape Statistical analysis Tomography, X-Ray Computed - methods |
title | Automated 3-D PDM construction from segmented images using deformable models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A17%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%203-D%20PDM%20construction%20from%20segmented%20images%20using%20deformable%20models&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Kaus,%20M.R.&rft.date=2003-08-01&rft.volume=22&rft.issue=8&rft.spage=1005&rft.epage=1013&rft.pages=1005-1013&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2003.815864&rft_dat=%3Cproquest_pubme%3E1671307208%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c466t-4bb870b7d7eb39dade7f140a48b73f664aad894a337be3888b858bd29a20de1d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=884284714&rft_id=info:pmid/12906254&rft_ieee_id=1216224&rfr_iscdi=true |