Loading…

Measurement of flexural modulus of polymeric foam with improved accuracy using moiré method

The flexural modulus of polymeric foams determined from three-point bending tests is usually inaccurate due to the local deformation undergone by the material during testing. The machine used in the test gives deflection values larger than the actual deflection of the foam specimen due to the deform...

Full description

Saved in:
Bibliographic Details
Published in:Polymer testing 2010-05, Vol.29 (3), p.358-368
Main Authors: Yen, K.S., Ratnam, M.M., Akil, H.M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The flexural modulus of polymeric foams determined from three-point bending tests is usually inaccurate due to the local deformation undergone by the material during testing. The machine used in the test gives deflection values larger than the actual deflection of the foam specimen due to the deformation of the material at the loading point. This leads to errors in the computation of the modulus value. In this work, the deflection values of a beam made of polymeric foam in a three-point bending test were determined using the moiré method. The change in the moiré pattern at the neutral axis of the foam during loading was recorded and converted into deflection values. The deflection data were used to generate the stress–strain curve from which the flexural modulus of the foam material was determined. The proposed method was verified using aluminum beams, where a high correlation between the deflection data from the machine readings and the moiré method was obtained. The flexural modulus of the foam determined using the moiré method was found to be within 3% of the value published in the material data sheet.
ISSN:0142-9418
1873-2348
DOI:10.1016/j.polymertesting.2009.12.011