Loading…

Dynamic classifier ensemble model for customer classification with imbalanced class distribution

Customer classification is widely used in customer relationship management including churn prediction, credit scoring, cross-selling and so on. In customer classification, an important yet challenging problem is the imbalance of data distribution. In this paper, we combine ensemble learning with cos...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications 2012-02, Vol.39 (3), p.3668-3675
Main Authors: Xiao, Jin, Xie, Ling, He, Changzheng, Jiang, Xiaoyi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c333t-75a1905df6b4e5835ee01192384198bf70f48168ef7ce3d811b11f395866fd1a3
cites cdi_FETCH-LOGICAL-c333t-75a1905df6b4e5835ee01192384198bf70f48168ef7ce3d811b11f395866fd1a3
container_end_page 3675
container_issue 3
container_start_page 3668
container_title Expert systems with applications
container_volume 39
creator Xiao, Jin
Xie, Ling
He, Changzheng
Jiang, Xiaoyi
description Customer classification is widely used in customer relationship management including churn prediction, credit scoring, cross-selling and so on. In customer classification, an important yet challenging problem is the imbalance of data distribution. In this paper, we combine ensemble learning with cost-sensitive learning, and propose a dynamic classifier ensemble method for imbalanced data (DCEID). For each test customer, it can adaptively select out the more appropriate one from the two kinds of dynamic ensemble approach: dynamic classifier selection (DCS) and dynamic ensemble selection (DES). Meanwhile, new cost-sensitive selection criteria for DCS and DES are constructed respectively to improve the classification ability for imbalanced data. We apply this method to a credit scoring dataset in UCI and a real churn prediction dataset from a telecommunication company. The experimental results show that the classification performance of DCEID is not only better than some static ensemble methods such as weighted random forests and improved balanced random forests, but also better than the existing DCS and DES strategies.
doi_str_mv 10.1016/j.eswa.2011.09.059
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671312937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417411013686</els_id><sourcerecordid>1671312937</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-75a1905df6b4e5835ee01192384198bf70f48168ef7ce3d811b11f395866fd1a3</originalsourceid><addsrcrecordid>eNp9kE1PhDAQhhujievqH_DE0QvYoUBp4sWsn8kmXvRcS5nGboCuLbjx31uCXj3NYZ53Mu9DyCXQDChU17sMw0FlOQXIqMhoKY7ICmrO0ooLdkxWVJQ8LYAXp-QshB2lwCnlK_J-9z2o3upEdyoEayz6BIeAfdNh0rsWu8Q4n-gpjK6Puz9Mq9G6ITnY8SOxfaM6NWhsl3XS2jB620wzck5OjOoCXvzONXl7uH_dPKXbl8fnze021YyxMeWlAkHL1lRNgWXNSsTYReSsLkDUjeHUFDVUNRqukbU1QANgmCjrqjItKLYmV8vdvXefE4ZR9jZo7OJj6KYgoeLAIBeMRzRfUO1dCB6N3HvbK_8tgcpZp9zJWaecdUoqZNQZQzdLCGOJr6hJBm1xLm096lG2zv4X_wFWv3_C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671312937</pqid></control><display><type>article</type><title>Dynamic classifier ensemble model for customer classification with imbalanced class distribution</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Xiao, Jin ; Xie, Ling ; He, Changzheng ; Jiang, Xiaoyi</creator><creatorcontrib>Xiao, Jin ; Xie, Ling ; He, Changzheng ; Jiang, Xiaoyi</creatorcontrib><description>Customer classification is widely used in customer relationship management including churn prediction, credit scoring, cross-selling and so on. In customer classification, an important yet challenging problem is the imbalance of data distribution. In this paper, we combine ensemble learning with cost-sensitive learning, and propose a dynamic classifier ensemble method for imbalanced data (DCEID). For each test customer, it can adaptively select out the more appropriate one from the two kinds of dynamic ensemble approach: dynamic classifier selection (DCS) and dynamic ensemble selection (DES). Meanwhile, new cost-sensitive selection criteria for DCS and DES are constructed respectively to improve the classification ability for imbalanced data. We apply this method to a credit scoring dataset in UCI and a real churn prediction dataset from a telecommunication company. The experimental results show that the classification performance of DCEID is not only better than some static ensemble methods such as weighted random forests and improved balanced random forests, but also better than the existing DCS and DES strategies.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2011.09.059</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Classification ; Classifiers ; Cost-sensitive learning ; Customer classification ; Dynamic classifier ensemble ; Dynamics ; Forests ; Imbalanced class distribution ; Learning ; Mathematical models ; Scoring ; Strategy</subject><ispartof>Expert systems with applications, 2012-02, Vol.39 (3), p.3668-3675</ispartof><rights>2011 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-75a1905df6b4e5835ee01192384198bf70f48168ef7ce3d811b11f395866fd1a3</citedby><cites>FETCH-LOGICAL-c333t-75a1905df6b4e5835ee01192384198bf70f48168ef7ce3d811b11f395866fd1a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xiao, Jin</creatorcontrib><creatorcontrib>Xie, Ling</creatorcontrib><creatorcontrib>He, Changzheng</creatorcontrib><creatorcontrib>Jiang, Xiaoyi</creatorcontrib><title>Dynamic classifier ensemble model for customer classification with imbalanced class distribution</title><title>Expert systems with applications</title><description>Customer classification is widely used in customer relationship management including churn prediction, credit scoring, cross-selling and so on. In customer classification, an important yet challenging problem is the imbalance of data distribution. In this paper, we combine ensemble learning with cost-sensitive learning, and propose a dynamic classifier ensemble method for imbalanced data (DCEID). For each test customer, it can adaptively select out the more appropriate one from the two kinds of dynamic ensemble approach: dynamic classifier selection (DCS) and dynamic ensemble selection (DES). Meanwhile, new cost-sensitive selection criteria for DCS and DES are constructed respectively to improve the classification ability for imbalanced data. We apply this method to a credit scoring dataset in UCI and a real churn prediction dataset from a telecommunication company. The experimental results show that the classification performance of DCEID is not only better than some static ensemble methods such as weighted random forests and improved balanced random forests, but also better than the existing DCS and DES strategies.</description><subject>Classification</subject><subject>Classifiers</subject><subject>Cost-sensitive learning</subject><subject>Customer classification</subject><subject>Dynamic classifier ensemble</subject><subject>Dynamics</subject><subject>Forests</subject><subject>Imbalanced class distribution</subject><subject>Learning</subject><subject>Mathematical models</subject><subject>Scoring</subject><subject>Strategy</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PhDAQhhujievqH_DE0QvYoUBp4sWsn8kmXvRcS5nGboCuLbjx31uCXj3NYZ53Mu9DyCXQDChU17sMw0FlOQXIqMhoKY7ICmrO0ooLdkxWVJQ8LYAXp-QshB2lwCnlK_J-9z2o3upEdyoEayz6BIeAfdNh0rsWu8Q4n-gpjK6Puz9Mq9G6ITnY8SOxfaM6NWhsl3XS2jB620wzck5OjOoCXvzONXl7uH_dPKXbl8fnze021YyxMeWlAkHL1lRNgWXNSsTYReSsLkDUjeHUFDVUNRqukbU1QANgmCjrqjItKLYmV8vdvXefE4ZR9jZo7OJj6KYgoeLAIBeMRzRfUO1dCB6N3HvbK_8tgcpZp9zJWaecdUoqZNQZQzdLCGOJr6hJBm1xLm096lG2zv4X_wFWv3_C</recordid><startdate>20120215</startdate><enddate>20120215</enddate><creator>Xiao, Jin</creator><creator>Xie, Ling</creator><creator>He, Changzheng</creator><creator>Jiang, Xiaoyi</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120215</creationdate><title>Dynamic classifier ensemble model for customer classification with imbalanced class distribution</title><author>Xiao, Jin ; Xie, Ling ; He, Changzheng ; Jiang, Xiaoyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-75a1905df6b4e5835ee01192384198bf70f48168ef7ce3d811b11f395866fd1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Classification</topic><topic>Classifiers</topic><topic>Cost-sensitive learning</topic><topic>Customer classification</topic><topic>Dynamic classifier ensemble</topic><topic>Dynamics</topic><topic>Forests</topic><topic>Imbalanced class distribution</topic><topic>Learning</topic><topic>Mathematical models</topic><topic>Scoring</topic><topic>Strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Jin</creatorcontrib><creatorcontrib>Xie, Ling</creatorcontrib><creatorcontrib>He, Changzheng</creatorcontrib><creatorcontrib>Jiang, Xiaoyi</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Jin</au><au>Xie, Ling</au><au>He, Changzheng</au><au>Jiang, Xiaoyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic classifier ensemble model for customer classification with imbalanced class distribution</atitle><jtitle>Expert systems with applications</jtitle><date>2012-02-15</date><risdate>2012</risdate><volume>39</volume><issue>3</issue><spage>3668</spage><epage>3675</epage><pages>3668-3675</pages><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>Customer classification is widely used in customer relationship management including churn prediction, credit scoring, cross-selling and so on. In customer classification, an important yet challenging problem is the imbalance of data distribution. In this paper, we combine ensemble learning with cost-sensitive learning, and propose a dynamic classifier ensemble method for imbalanced data (DCEID). For each test customer, it can adaptively select out the more appropriate one from the two kinds of dynamic ensemble approach: dynamic classifier selection (DCS) and dynamic ensemble selection (DES). Meanwhile, new cost-sensitive selection criteria for DCS and DES are constructed respectively to improve the classification ability for imbalanced data. We apply this method to a credit scoring dataset in UCI and a real churn prediction dataset from a telecommunication company. The experimental results show that the classification performance of DCEID is not only better than some static ensemble methods such as weighted random forests and improved balanced random forests, but also better than the existing DCS and DES strategies.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2011.09.059</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4174
ispartof Expert systems with applications, 2012-02, Vol.39 (3), p.3668-3675
issn 0957-4174
1873-6793
language eng
recordid cdi_proquest_miscellaneous_1671312937
source ScienceDirect Freedom Collection 2022-2024
subjects Classification
Classifiers
Cost-sensitive learning
Customer classification
Dynamic classifier ensemble
Dynamics
Forests
Imbalanced class distribution
Learning
Mathematical models
Scoring
Strategy
title Dynamic classifier ensemble model for customer classification with imbalanced class distribution
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A44%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20classifier%20ensemble%20model%20for%20customer%20classification%20with%20imbalanced%20class%20distribution&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Xiao,%20Jin&rft.date=2012-02-15&rft.volume=39&rft.issue=3&rft.spage=3668&rft.epage=3675&rft.pages=3668-3675&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2011.09.059&rft_dat=%3Cproquest_cross%3E1671312937%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c333t-75a1905df6b4e5835ee01192384198bf70f48168ef7ce3d811b11f395866fd1a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671312937&rft_id=info:pmid/&rfr_iscdi=true