Loading…
Dynamic classifier ensemble model for customer classification with imbalanced class distribution
Customer classification is widely used in customer relationship management including churn prediction, credit scoring, cross-selling and so on. In customer classification, an important yet challenging problem is the imbalance of data distribution. In this paper, we combine ensemble learning with cos...
Saved in:
Published in: | Expert systems with applications 2012-02, Vol.39 (3), p.3668-3675 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c333t-75a1905df6b4e5835ee01192384198bf70f48168ef7ce3d811b11f395866fd1a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c333t-75a1905df6b4e5835ee01192384198bf70f48168ef7ce3d811b11f395866fd1a3 |
container_end_page | 3675 |
container_issue | 3 |
container_start_page | 3668 |
container_title | Expert systems with applications |
container_volume | 39 |
creator | Xiao, Jin Xie, Ling He, Changzheng Jiang, Xiaoyi |
description | Customer classification is widely used in customer relationship management including churn prediction, credit scoring, cross-selling and so on. In customer classification, an important yet challenging problem is the imbalance of data distribution. In this paper, we combine ensemble learning with cost-sensitive learning, and propose a dynamic classifier ensemble method for imbalanced data (DCEID). For each test customer, it can adaptively select out the more appropriate one from the two kinds of dynamic ensemble approach: dynamic classifier selection (DCS) and dynamic ensemble selection (DES). Meanwhile, new cost-sensitive selection criteria for DCS and DES are constructed respectively to improve the classification ability for imbalanced data. We apply this method to a credit scoring dataset in UCI and a real churn prediction dataset from a telecommunication company. The experimental results show that the classification performance of DCEID is not only better than some static ensemble methods such as weighted random forests and improved balanced random forests, but also better than the existing DCS and DES strategies. |
doi_str_mv | 10.1016/j.eswa.2011.09.059 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671312937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417411013686</els_id><sourcerecordid>1671312937</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-75a1905df6b4e5835ee01192384198bf70f48168ef7ce3d811b11f395866fd1a3</originalsourceid><addsrcrecordid>eNp9kE1PhDAQhhujievqH_DE0QvYoUBp4sWsn8kmXvRcS5nGboCuLbjx31uCXj3NYZ53Mu9DyCXQDChU17sMw0FlOQXIqMhoKY7ICmrO0ooLdkxWVJQ8LYAXp-QshB2lwCnlK_J-9z2o3upEdyoEayz6BIeAfdNh0rsWu8Q4n-gpjK6Puz9Mq9G6ITnY8SOxfaM6NWhsl3XS2jB620wzck5OjOoCXvzONXl7uH_dPKXbl8fnze021YyxMeWlAkHL1lRNgWXNSsTYReSsLkDUjeHUFDVUNRqukbU1QANgmCjrqjItKLYmV8vdvXefE4ZR9jZo7OJj6KYgoeLAIBeMRzRfUO1dCB6N3HvbK_8tgcpZp9zJWaecdUoqZNQZQzdLCGOJr6hJBm1xLm096lG2zv4X_wFWv3_C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671312937</pqid></control><display><type>article</type><title>Dynamic classifier ensemble model for customer classification with imbalanced class distribution</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Xiao, Jin ; Xie, Ling ; He, Changzheng ; Jiang, Xiaoyi</creator><creatorcontrib>Xiao, Jin ; Xie, Ling ; He, Changzheng ; Jiang, Xiaoyi</creatorcontrib><description>Customer classification is widely used in customer relationship management including churn prediction, credit scoring, cross-selling and so on. In customer classification, an important yet challenging problem is the imbalance of data distribution. In this paper, we combine ensemble learning with cost-sensitive learning, and propose a dynamic classifier ensemble method for imbalanced data (DCEID). For each test customer, it can adaptively select out the more appropriate one from the two kinds of dynamic ensemble approach: dynamic classifier selection (DCS) and dynamic ensemble selection (DES). Meanwhile, new cost-sensitive selection criteria for DCS and DES are constructed respectively to improve the classification ability for imbalanced data. We apply this method to a credit scoring dataset in UCI and a real churn prediction dataset from a telecommunication company. The experimental results show that the classification performance of DCEID is not only better than some static ensemble methods such as weighted random forests and improved balanced random forests, but also better than the existing DCS and DES strategies.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2011.09.059</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Classification ; Classifiers ; Cost-sensitive learning ; Customer classification ; Dynamic classifier ensemble ; Dynamics ; Forests ; Imbalanced class distribution ; Learning ; Mathematical models ; Scoring ; Strategy</subject><ispartof>Expert systems with applications, 2012-02, Vol.39 (3), p.3668-3675</ispartof><rights>2011 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-75a1905df6b4e5835ee01192384198bf70f48168ef7ce3d811b11f395866fd1a3</citedby><cites>FETCH-LOGICAL-c333t-75a1905df6b4e5835ee01192384198bf70f48168ef7ce3d811b11f395866fd1a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xiao, Jin</creatorcontrib><creatorcontrib>Xie, Ling</creatorcontrib><creatorcontrib>He, Changzheng</creatorcontrib><creatorcontrib>Jiang, Xiaoyi</creatorcontrib><title>Dynamic classifier ensemble model for customer classification with imbalanced class distribution</title><title>Expert systems with applications</title><description>Customer classification is widely used in customer relationship management including churn prediction, credit scoring, cross-selling and so on. In customer classification, an important yet challenging problem is the imbalance of data distribution. In this paper, we combine ensemble learning with cost-sensitive learning, and propose a dynamic classifier ensemble method for imbalanced data (DCEID). For each test customer, it can adaptively select out the more appropriate one from the two kinds of dynamic ensemble approach: dynamic classifier selection (DCS) and dynamic ensemble selection (DES). Meanwhile, new cost-sensitive selection criteria for DCS and DES are constructed respectively to improve the classification ability for imbalanced data. We apply this method to a credit scoring dataset in UCI and a real churn prediction dataset from a telecommunication company. The experimental results show that the classification performance of DCEID is not only better than some static ensemble methods such as weighted random forests and improved balanced random forests, but also better than the existing DCS and DES strategies.</description><subject>Classification</subject><subject>Classifiers</subject><subject>Cost-sensitive learning</subject><subject>Customer classification</subject><subject>Dynamic classifier ensemble</subject><subject>Dynamics</subject><subject>Forests</subject><subject>Imbalanced class distribution</subject><subject>Learning</subject><subject>Mathematical models</subject><subject>Scoring</subject><subject>Strategy</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PhDAQhhujievqH_DE0QvYoUBp4sWsn8kmXvRcS5nGboCuLbjx31uCXj3NYZ53Mu9DyCXQDChU17sMw0FlOQXIqMhoKY7ICmrO0ooLdkxWVJQ8LYAXp-QshB2lwCnlK_J-9z2o3upEdyoEayz6BIeAfdNh0rsWu8Q4n-gpjK6Puz9Mq9G6ITnY8SOxfaM6NWhsl3XS2jB620wzck5OjOoCXvzONXl7uH_dPKXbl8fnze021YyxMeWlAkHL1lRNgWXNSsTYReSsLkDUjeHUFDVUNRqukbU1QANgmCjrqjItKLYmV8vdvXefE4ZR9jZo7OJj6KYgoeLAIBeMRzRfUO1dCB6N3HvbK_8tgcpZp9zJWaecdUoqZNQZQzdLCGOJr6hJBm1xLm096lG2zv4X_wFWv3_C</recordid><startdate>20120215</startdate><enddate>20120215</enddate><creator>Xiao, Jin</creator><creator>Xie, Ling</creator><creator>He, Changzheng</creator><creator>Jiang, Xiaoyi</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120215</creationdate><title>Dynamic classifier ensemble model for customer classification with imbalanced class distribution</title><author>Xiao, Jin ; Xie, Ling ; He, Changzheng ; Jiang, Xiaoyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-75a1905df6b4e5835ee01192384198bf70f48168ef7ce3d811b11f395866fd1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Classification</topic><topic>Classifiers</topic><topic>Cost-sensitive learning</topic><topic>Customer classification</topic><topic>Dynamic classifier ensemble</topic><topic>Dynamics</topic><topic>Forests</topic><topic>Imbalanced class distribution</topic><topic>Learning</topic><topic>Mathematical models</topic><topic>Scoring</topic><topic>Strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Jin</creatorcontrib><creatorcontrib>Xie, Ling</creatorcontrib><creatorcontrib>He, Changzheng</creatorcontrib><creatorcontrib>Jiang, Xiaoyi</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Jin</au><au>Xie, Ling</au><au>He, Changzheng</au><au>Jiang, Xiaoyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic classifier ensemble model for customer classification with imbalanced class distribution</atitle><jtitle>Expert systems with applications</jtitle><date>2012-02-15</date><risdate>2012</risdate><volume>39</volume><issue>3</issue><spage>3668</spage><epage>3675</epage><pages>3668-3675</pages><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>Customer classification is widely used in customer relationship management including churn prediction, credit scoring, cross-selling and so on. In customer classification, an important yet challenging problem is the imbalance of data distribution. In this paper, we combine ensemble learning with cost-sensitive learning, and propose a dynamic classifier ensemble method for imbalanced data (DCEID). For each test customer, it can adaptively select out the more appropriate one from the two kinds of dynamic ensemble approach: dynamic classifier selection (DCS) and dynamic ensemble selection (DES). Meanwhile, new cost-sensitive selection criteria for DCS and DES are constructed respectively to improve the classification ability for imbalanced data. We apply this method to a credit scoring dataset in UCI and a real churn prediction dataset from a telecommunication company. The experimental results show that the classification performance of DCEID is not only better than some static ensemble methods such as weighted random forests and improved balanced random forests, but also better than the existing DCS and DES strategies.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2011.09.059</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4174 |
ispartof | Expert systems with applications, 2012-02, Vol.39 (3), p.3668-3675 |
issn | 0957-4174 1873-6793 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671312937 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Classification Classifiers Cost-sensitive learning Customer classification Dynamic classifier ensemble Dynamics Forests Imbalanced class distribution Learning Mathematical models Scoring Strategy |
title | Dynamic classifier ensemble model for customer classification with imbalanced class distribution |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A44%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20classifier%20ensemble%20model%20for%20customer%20classification%20with%20imbalanced%20class%20distribution&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Xiao,%20Jin&rft.date=2012-02-15&rft.volume=39&rft.issue=3&rft.spage=3668&rft.epage=3675&rft.pages=3668-3675&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2011.09.059&rft_dat=%3Cproquest_cross%3E1671312937%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c333t-75a1905df6b4e5835ee01192384198bf70f48168ef7ce3d811b11f395866fd1a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671312937&rft_id=info:pmid/&rfr_iscdi=true |