Loading…

Adsorption of hydrogen atoms onto the exterior wall of carbon nanotubes and their thermodynamics properties

In the present work, we present a systematic analysis of the chemisorption process pathway of hydrogen atoms onto the exterior wall of (5,5) carbon nanotubes using the ONIOM2 (B3LYP(6–31+G(d,p):UFF)) scheme, and we avoid the gross assumption of fixing any of the carbon atoms during the simulation. I...

Full description

Saved in:
Bibliographic Details
Published in:International journal of hydrogen energy 2010-05, Vol.35 (10), p.4543-4553
Main Authors: Ng, T.Y., Ren, Y.X., Liew, K.M.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the present work, we present a systematic analysis of the chemisorption process pathway of hydrogen atoms onto the exterior wall of (5,5) carbon nanotubes using the ONIOM2 (B3LYP(6–31+G(d,p):UFF)) scheme, and we avoid the gross assumption of fixing any of the carbon atoms during the simulation. It is shown that the adsorption of hydrogen atoms onto the sidewall of CNTs are energetically favorable and the most stable state is to form two H–C σ-bonds while the original σ-bond between the carbon atoms is totally severed. In particular, we examined the molecular thermodynamics properties for the reaction at a range of temperatures from 77 K to 1000 K, and the results suggests that the reaction is possible at ambient temperature, but it is less favorable than that at lower temperatures.
ISSN:0360-3199
1879-3487
DOI:10.1016/j.ijhydene.2010.02.044