Loading…

Hybrid, Multiresolution Wires with Massless Frictional Contacts

We describe a method for the visual interactive simulation of wires contacting with rigid multibodies. The physical model used is a hybrid combining lumped elements and massless quasistatic representations. The latter is based on a kinematic constraint preserving the total length of the wire along a...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on visualization and computer graphics 2011-07, Vol.17 (7), p.970-982
Main Authors: Servin, Martin, Lacoursière, Claude, Nordfelth, Fredrik, Bodin, Kenneth
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We describe a method for the visual interactive simulation of wires contacting with rigid multibodies. The physical model used is a hybrid combining lumped elements and massless quasistatic representations. The latter is based on a kinematic constraint preserving the total length of the wire along a segmented path which can involve multiple bodies simultaneously and dry frictional contact nodes used for roping, lassoing, and fastening. These nodes provide stick and slide friction along the edges of the contacting geometries. The lumped element resolution is adapted dynamically based on local stability criteria, becoming coarser as the tension increases, and up to the purely kinematic representation. Kinematic segments and contact nodes are added, deleted, and propagated based on contact geometries and dry friction configurations. The method gives a dramatic increase in both performance and robustness because it quickly decimates superfluous nodes without loosing stability, yet adapts to complex configurations with many contacts and high curvature, keeping a fixed, large integration time step. Numerical results demonstrating the performance and stability of the adaptive multiresolution scheme are presented along with an array of representative simulation examples illustrating the versatility of the frictional contact model.
ISSN:1077-2626
1941-0506
1941-0506
DOI:10.1109/TVCG.2010.122