Loading…
Dosimetric Assessment of Simultaneous Exposure to ELF Electric and Magnetic Fields
In the low-frequency range, both electric and magnetic fields interact with biological tissue by inducing intracorporal electric current densities, although ruled by different physical laws and, hence, with different intracorporal orientation and pathways. Presently, standards require a separate ass...
Saved in:
Published in: | IEEE transactions on biomedical engineering 2008-02, Vol.55 (2), p.671-674 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c506t-efe53580b3d27ec41de3733e067e189218a778ef369aab2dcc9a4f88c86283983 |
---|---|
cites | cdi_FETCH-LOGICAL-c506t-efe53580b3d27ec41de3733e067e189218a778ef369aab2dcc9a4f88c86283983 |
container_end_page | 674 |
container_issue | 2 |
container_start_page | 671 |
container_title | IEEE transactions on biomedical engineering |
container_volume | 55 |
creator | Leitgeb, Norbert Cech, Roman |
description | In the low-frequency range, both electric and magnetic fields interact with biological tissue by inducing intracorporal electric current densities, although ruled by different physical laws and, hence, with different intracorporal orientation and pathways. Presently, standards require a separate assessment of electric and magnetic fields even in the case of simultaneous exposure and, hence, ignore the superposition of intracorporal current densities. Numerical simulations with the Visible Man model show that this can lead to underestimating current densities in the central nervous system (CNS) by up to 29%. While the superposed electric current densities in the CNS still meet the basic restrictions, the situation changes if a fetus with its own CNS requires the same level of protection. When the compliance volume is extended to the trunk, the reference-level electric-field exposure exceeds the basic restrictions by 38%. Depending on the kind of summation of the vectorial contributions, simultaneous exposure to the 50 Hz-5 kV/m electric field and 100-T magnetic field may lead to a 2.1-fold to 2.6-fold excess of the basic restriction. While this does not prove noncompliance, it indicates that fetal CNS exposure modeling is needed for clarification. |
doi_str_mv | 10.1109/TBME.2007.901023 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671315030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4360060</ieee_id><sourcerecordid>2324508131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c506t-efe53580b3d27ec41de3733e067e189218a778ef369aab2dcc9a4f88c86283983</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVISTZp7oVAMD20vXg7I1lfxzTxtoUNhTY5G608Dg7-2Fg2tP--cr200ENOwzDPOyPxMPYGYY0I9uP9p7t8zQH02gICF0dshVKalEuBx2wFgCa13Gan7CyEp9hmJlMn7BQN1wAgVuz7bR_qlsah9sl1CBRCS92Y9FXyo26nZnQd9VNI8p_7PkwDJWOf5NtNkjfk_2RcVyZ37rGjMTabmpoyvGavKtcEujjUc_awye9vvqTbb5-_3lxvUy9BjSlVJIU0sBMl1-QzLEloIQiUJjSWo3FaG6qEss7teOm9dVlljDeKG2GNOGfvl737oX-eKIxFWwdPTbO8uTDKSq0yVJF89yLJYb4nZ_DDiyAqjQIlCIjo2__Qp34auvjheJgrNMgxQrBAfuhDGKgq9kPduuFXgVDMBovZYDEbLBaDMXJ12DvtWir_BQ7KInC5ADUR_R1nQgEoEL8B3UCc-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862618121</pqid></control><display><type>article</type><title>Dosimetric Assessment of Simultaneous Exposure to ELF Electric and Magnetic Fields</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Leitgeb, Norbert ; Cech, Roman</creator><creatorcontrib>Leitgeb, Norbert ; Cech, Roman</creatorcontrib><description>In the low-frequency range, both electric and magnetic fields interact with biological tissue by inducing intracorporal electric current densities, although ruled by different physical laws and, hence, with different intracorporal orientation and pathways. Presently, standards require a separate assessment of electric and magnetic fields even in the case of simultaneous exposure and, hence, ignore the superposition of intracorporal current densities. Numerical simulations with the Visible Man model show that this can lead to underestimating current densities in the central nervous system (CNS) by up to 29%. While the superposed electric current densities in the CNS still meet the basic restrictions, the situation changes if a fetus with its own CNS requires the same level of protection. When the compliance volume is extended to the trunk, the reference-level electric-field exposure exceeds the basic restrictions by 38%. Depending on the kind of summation of the vectorial contributions, simultaneous exposure to the 50 Hz-5 kV/m electric field and 100-T magnetic field may lead to a 2.1-fold to 2.6-fold excess of the basic restriction. While this does not prove noncompliance, it indicates that fetal CNS exposure modeling is needed for clarification.</description><identifier>ISSN: 0018-9294</identifier><identifier>EISSN: 1558-2531</identifier><identifier>DOI: 10.1109/TBME.2007.901023</identifier><identifier>PMID: 18270003</identifier><identifier>CODEN: IEBEAX</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Assessments ; Basic restrictions ; Biological tissues ; Body Burden ; Central nervous system ; Computer Simulation ; Constrictions ; Current density ; Density ; dosimetry ; Electric current ; Electricity ; Electromagnetic Fields ; Environmental Exposure - analysis ; Fetus ; Geophysical measurement techniques ; Ground penetrating radar ; health risk assessment ; Humans ; Lead ; Magnetic fields ; Mathematical models ; Models, Biological ; Nervous system ; Numerical simulation ; Protection ; reference levels ; Relative Biological Effectiveness ; Studies ; Whole-Body Counting - methods</subject><ispartof>IEEE transactions on biomedical engineering, 2008-02, Vol.55 (2), p.671-674</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c506t-efe53580b3d27ec41de3733e067e189218a778ef369aab2dcc9a4f88c86283983</citedby><cites>FETCH-LOGICAL-c506t-efe53580b3d27ec41de3733e067e189218a778ef369aab2dcc9a4f88c86283983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4360060$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18270003$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Leitgeb, Norbert</creatorcontrib><creatorcontrib>Cech, Roman</creatorcontrib><title>Dosimetric Assessment of Simultaneous Exposure to ELF Electric and Magnetic Fields</title><title>IEEE transactions on biomedical engineering</title><addtitle>TBME</addtitle><addtitle>IEEE Trans Biomed Eng</addtitle><description>In the low-frequency range, both electric and magnetic fields interact with biological tissue by inducing intracorporal electric current densities, although ruled by different physical laws and, hence, with different intracorporal orientation and pathways. Presently, standards require a separate assessment of electric and magnetic fields even in the case of simultaneous exposure and, hence, ignore the superposition of intracorporal current densities. Numerical simulations with the Visible Man model show that this can lead to underestimating current densities in the central nervous system (CNS) by up to 29%. While the superposed electric current densities in the CNS still meet the basic restrictions, the situation changes if a fetus with its own CNS requires the same level of protection. When the compliance volume is extended to the trunk, the reference-level electric-field exposure exceeds the basic restrictions by 38%. Depending on the kind of summation of the vectorial contributions, simultaneous exposure to the 50 Hz-5 kV/m electric field and 100-T magnetic field may lead to a 2.1-fold to 2.6-fold excess of the basic restriction. While this does not prove noncompliance, it indicates that fetal CNS exposure modeling is needed for clarification.</description><subject>Assessments</subject><subject>Basic restrictions</subject><subject>Biological tissues</subject><subject>Body Burden</subject><subject>Central nervous system</subject><subject>Computer Simulation</subject><subject>Constrictions</subject><subject>Current density</subject><subject>Density</subject><subject>dosimetry</subject><subject>Electric current</subject><subject>Electricity</subject><subject>Electromagnetic Fields</subject><subject>Environmental Exposure - analysis</subject><subject>Fetus</subject><subject>Geophysical measurement techniques</subject><subject>Ground penetrating radar</subject><subject>health risk assessment</subject><subject>Humans</subject><subject>Lead</subject><subject>Magnetic fields</subject><subject>Mathematical models</subject><subject>Models, Biological</subject><subject>Nervous system</subject><subject>Numerical simulation</subject><subject>Protection</subject><subject>reference levels</subject><subject>Relative Biological Effectiveness</subject><subject>Studies</subject><subject>Whole-Body Counting - methods</subject><issn>0018-9294</issn><issn>1558-2531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kU1r3DAQhkVISTZp7oVAMD20vXg7I1lfxzTxtoUNhTY5G608Dg7-2Fg2tP--cr200ENOwzDPOyPxMPYGYY0I9uP9p7t8zQH02gICF0dshVKalEuBx2wFgCa13Gan7CyEp9hmJlMn7BQN1wAgVuz7bR_qlsah9sl1CBRCS92Y9FXyo26nZnQd9VNI8p_7PkwDJWOf5NtNkjfk_2RcVyZ37rGjMTabmpoyvGavKtcEujjUc_awye9vvqTbb5-_3lxvUy9BjSlVJIU0sBMl1-QzLEloIQiUJjSWo3FaG6qEss7teOm9dVlljDeKG2GNOGfvl737oX-eKIxFWwdPTbO8uTDKSq0yVJF89yLJYb4nZ_DDiyAqjQIlCIjo2__Qp34auvjheJgrNMgxQrBAfuhDGKgq9kPduuFXgVDMBovZYDEbLBaDMXJ12DvtWir_BQ7KInC5ADUR_R1nQgEoEL8B3UCc-A</recordid><startdate>20080201</startdate><enddate>20080201</enddate><creator>Leitgeb, Norbert</creator><creator>Cech, Roman</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20080201</creationdate><title>Dosimetric Assessment of Simultaneous Exposure to ELF Electric and Magnetic Fields</title><author>Leitgeb, Norbert ; Cech, Roman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c506t-efe53580b3d27ec41de3733e067e189218a778ef369aab2dcc9a4f88c86283983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Assessments</topic><topic>Basic restrictions</topic><topic>Biological tissues</topic><topic>Body Burden</topic><topic>Central nervous system</topic><topic>Computer Simulation</topic><topic>Constrictions</topic><topic>Current density</topic><topic>Density</topic><topic>dosimetry</topic><topic>Electric current</topic><topic>Electricity</topic><topic>Electromagnetic Fields</topic><topic>Environmental Exposure - analysis</topic><topic>Fetus</topic><topic>Geophysical measurement techniques</topic><topic>Ground penetrating radar</topic><topic>health risk assessment</topic><topic>Humans</topic><topic>Lead</topic><topic>Magnetic fields</topic><topic>Mathematical models</topic><topic>Models, Biological</topic><topic>Nervous system</topic><topic>Numerical simulation</topic><topic>Protection</topic><topic>reference levels</topic><topic>Relative Biological Effectiveness</topic><topic>Studies</topic><topic>Whole-Body Counting - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leitgeb, Norbert</creatorcontrib><creatorcontrib>Cech, Roman</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leitgeb, Norbert</au><au>Cech, Roman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dosimetric Assessment of Simultaneous Exposure to ELF Electric and Magnetic Fields</atitle><jtitle>IEEE transactions on biomedical engineering</jtitle><stitle>TBME</stitle><addtitle>IEEE Trans Biomed Eng</addtitle><date>2008-02-01</date><risdate>2008</risdate><volume>55</volume><issue>2</issue><spage>671</spage><epage>674</epage><pages>671-674</pages><issn>0018-9294</issn><eissn>1558-2531</eissn><coden>IEBEAX</coden><abstract>In the low-frequency range, both electric and magnetic fields interact with biological tissue by inducing intracorporal electric current densities, although ruled by different physical laws and, hence, with different intracorporal orientation and pathways. Presently, standards require a separate assessment of electric and magnetic fields even in the case of simultaneous exposure and, hence, ignore the superposition of intracorporal current densities. Numerical simulations with the Visible Man model show that this can lead to underestimating current densities in the central nervous system (CNS) by up to 29%. While the superposed electric current densities in the CNS still meet the basic restrictions, the situation changes if a fetus with its own CNS requires the same level of protection. When the compliance volume is extended to the trunk, the reference-level electric-field exposure exceeds the basic restrictions by 38%. Depending on the kind of summation of the vectorial contributions, simultaneous exposure to the 50 Hz-5 kV/m electric field and 100-T magnetic field may lead to a 2.1-fold to 2.6-fold excess of the basic restriction. While this does not prove noncompliance, it indicates that fetal CNS exposure modeling is needed for clarification.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>18270003</pmid><doi>10.1109/TBME.2007.901023</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9294 |
ispartof | IEEE transactions on biomedical engineering, 2008-02, Vol.55 (2), p.671-674 |
issn | 0018-9294 1558-2531 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671315030 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Assessments Basic restrictions Biological tissues Body Burden Central nervous system Computer Simulation Constrictions Current density Density dosimetry Electric current Electricity Electromagnetic Fields Environmental Exposure - analysis Fetus Geophysical measurement techniques Ground penetrating radar health risk assessment Humans Lead Magnetic fields Mathematical models Models, Biological Nervous system Numerical simulation Protection reference levels Relative Biological Effectiveness Studies Whole-Body Counting - methods |
title | Dosimetric Assessment of Simultaneous Exposure to ELF Electric and Magnetic Fields |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A00%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dosimetric%20Assessment%20of%20Simultaneous%20Exposure%20to%20ELF%20Electric%20and%20Magnetic%20Fields&rft.jtitle=IEEE%20transactions%20on%20biomedical%20engineering&rft.au=Leitgeb,%20Norbert&rft.date=2008-02-01&rft.volume=55&rft.issue=2&rft.spage=671&rft.epage=674&rft.pages=671-674&rft.issn=0018-9294&rft.eissn=1558-2531&rft.coden=IEBEAX&rft_id=info:doi/10.1109/TBME.2007.901023&rft_dat=%3Cproquest_pubme%3E2324508131%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c506t-efe53580b3d27ec41de3733e067e189218a778ef369aab2dcc9a4f88c86283983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=862618121&rft_id=info:pmid/18270003&rft_ieee_id=4360060&rfr_iscdi=true |