Loading…

Dosimetric Assessment of Simultaneous Exposure to ELF Electric and Magnetic Fields

In the low-frequency range, both electric and magnetic fields interact with biological tissue by inducing intracorporal electric current densities, although ruled by different physical laws and, hence, with different intracorporal orientation and pathways. Presently, standards require a separate ass...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on biomedical engineering 2008-02, Vol.55 (2), p.671-674
Main Authors: Leitgeb, Norbert, Cech, Roman
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c506t-efe53580b3d27ec41de3733e067e189218a778ef369aab2dcc9a4f88c86283983
cites cdi_FETCH-LOGICAL-c506t-efe53580b3d27ec41de3733e067e189218a778ef369aab2dcc9a4f88c86283983
container_end_page 674
container_issue 2
container_start_page 671
container_title IEEE transactions on biomedical engineering
container_volume 55
creator Leitgeb, Norbert
Cech, Roman
description In the low-frequency range, both electric and magnetic fields interact with biological tissue by inducing intracorporal electric current densities, although ruled by different physical laws and, hence, with different intracorporal orientation and pathways. Presently, standards require a separate assessment of electric and magnetic fields even in the case of simultaneous exposure and, hence, ignore the superposition of intracorporal current densities. Numerical simulations with the Visible Man model show that this can lead to underestimating current densities in the central nervous system (CNS) by up to 29%. While the superposed electric current densities in the CNS still meet the basic restrictions, the situation changes if a fetus with its own CNS requires the same level of protection. When the compliance volume is extended to the trunk, the reference-level electric-field exposure exceeds the basic restrictions by 38%. Depending on the kind of summation of the vectorial contributions, simultaneous exposure to the 50 Hz-5 kV/m electric field and 100-T magnetic field may lead to a 2.1-fold to 2.6-fold excess of the basic restriction. While this does not prove noncompliance, it indicates that fetal CNS exposure modeling is needed for clarification.
doi_str_mv 10.1109/TBME.2007.901023
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671315030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4360060</ieee_id><sourcerecordid>2324508131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c506t-efe53580b3d27ec41de3733e067e189218a778ef369aab2dcc9a4f88c86283983</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVISTZp7oVAMD20vXg7I1lfxzTxtoUNhTY5G608Dg7-2Fg2tP--cr200ENOwzDPOyPxMPYGYY0I9uP9p7t8zQH02gICF0dshVKalEuBx2wFgCa13Gan7CyEp9hmJlMn7BQN1wAgVuz7bR_qlsah9sl1CBRCS92Y9FXyo26nZnQd9VNI8p_7PkwDJWOf5NtNkjfk_2RcVyZ37rGjMTabmpoyvGavKtcEujjUc_awye9vvqTbb5-_3lxvUy9BjSlVJIU0sBMl1-QzLEloIQiUJjSWo3FaG6qEss7teOm9dVlljDeKG2GNOGfvl737oX-eKIxFWwdPTbO8uTDKSq0yVJF89yLJYb4nZ_DDiyAqjQIlCIjo2__Qp34auvjheJgrNMgxQrBAfuhDGKgq9kPduuFXgVDMBovZYDEbLBaDMXJ12DvtWir_BQ7KInC5ADUR_R1nQgEoEL8B3UCc-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862618121</pqid></control><display><type>article</type><title>Dosimetric Assessment of Simultaneous Exposure to ELF Electric and Magnetic Fields</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Leitgeb, Norbert ; Cech, Roman</creator><creatorcontrib>Leitgeb, Norbert ; Cech, Roman</creatorcontrib><description>In the low-frequency range, both electric and magnetic fields interact with biological tissue by inducing intracorporal electric current densities, although ruled by different physical laws and, hence, with different intracorporal orientation and pathways. Presently, standards require a separate assessment of electric and magnetic fields even in the case of simultaneous exposure and, hence, ignore the superposition of intracorporal current densities. Numerical simulations with the Visible Man model show that this can lead to underestimating current densities in the central nervous system (CNS) by up to 29%. While the superposed electric current densities in the CNS still meet the basic restrictions, the situation changes if a fetus with its own CNS requires the same level of protection. When the compliance volume is extended to the trunk, the reference-level electric-field exposure exceeds the basic restrictions by 38%. Depending on the kind of summation of the vectorial contributions, simultaneous exposure to the 50 Hz-5 kV/m electric field and 100-T magnetic field may lead to a 2.1-fold to 2.6-fold excess of the basic restriction. While this does not prove noncompliance, it indicates that fetal CNS exposure modeling is needed for clarification.</description><identifier>ISSN: 0018-9294</identifier><identifier>EISSN: 1558-2531</identifier><identifier>DOI: 10.1109/TBME.2007.901023</identifier><identifier>PMID: 18270003</identifier><identifier>CODEN: IEBEAX</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Assessments ; Basic restrictions ; Biological tissues ; Body Burden ; Central nervous system ; Computer Simulation ; Constrictions ; Current density ; Density ; dosimetry ; Electric current ; Electricity ; Electromagnetic Fields ; Environmental Exposure - analysis ; Fetus ; Geophysical measurement techniques ; Ground penetrating radar ; health risk assessment ; Humans ; Lead ; Magnetic fields ; Mathematical models ; Models, Biological ; Nervous system ; Numerical simulation ; Protection ; reference levels ; Relative Biological Effectiveness ; Studies ; Whole-Body Counting - methods</subject><ispartof>IEEE transactions on biomedical engineering, 2008-02, Vol.55 (2), p.671-674</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c506t-efe53580b3d27ec41de3733e067e189218a778ef369aab2dcc9a4f88c86283983</citedby><cites>FETCH-LOGICAL-c506t-efe53580b3d27ec41de3733e067e189218a778ef369aab2dcc9a4f88c86283983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4360060$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18270003$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Leitgeb, Norbert</creatorcontrib><creatorcontrib>Cech, Roman</creatorcontrib><title>Dosimetric Assessment of Simultaneous Exposure to ELF Electric and Magnetic Fields</title><title>IEEE transactions on biomedical engineering</title><addtitle>TBME</addtitle><addtitle>IEEE Trans Biomed Eng</addtitle><description>In the low-frequency range, both electric and magnetic fields interact with biological tissue by inducing intracorporal electric current densities, although ruled by different physical laws and, hence, with different intracorporal orientation and pathways. Presently, standards require a separate assessment of electric and magnetic fields even in the case of simultaneous exposure and, hence, ignore the superposition of intracorporal current densities. Numerical simulations with the Visible Man model show that this can lead to underestimating current densities in the central nervous system (CNS) by up to 29%. While the superposed electric current densities in the CNS still meet the basic restrictions, the situation changes if a fetus with its own CNS requires the same level of protection. When the compliance volume is extended to the trunk, the reference-level electric-field exposure exceeds the basic restrictions by 38%. Depending on the kind of summation of the vectorial contributions, simultaneous exposure to the 50 Hz-5 kV/m electric field and 100-T magnetic field may lead to a 2.1-fold to 2.6-fold excess of the basic restriction. While this does not prove noncompliance, it indicates that fetal CNS exposure modeling is needed for clarification.</description><subject>Assessments</subject><subject>Basic restrictions</subject><subject>Biological tissues</subject><subject>Body Burden</subject><subject>Central nervous system</subject><subject>Computer Simulation</subject><subject>Constrictions</subject><subject>Current density</subject><subject>Density</subject><subject>dosimetry</subject><subject>Electric current</subject><subject>Electricity</subject><subject>Electromagnetic Fields</subject><subject>Environmental Exposure - analysis</subject><subject>Fetus</subject><subject>Geophysical measurement techniques</subject><subject>Ground penetrating radar</subject><subject>health risk assessment</subject><subject>Humans</subject><subject>Lead</subject><subject>Magnetic fields</subject><subject>Mathematical models</subject><subject>Models, Biological</subject><subject>Nervous system</subject><subject>Numerical simulation</subject><subject>Protection</subject><subject>reference levels</subject><subject>Relative Biological Effectiveness</subject><subject>Studies</subject><subject>Whole-Body Counting - methods</subject><issn>0018-9294</issn><issn>1558-2531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kU1r3DAQhkVISTZp7oVAMD20vXg7I1lfxzTxtoUNhTY5G608Dg7-2Fg2tP--cr200ENOwzDPOyPxMPYGYY0I9uP9p7t8zQH02gICF0dshVKalEuBx2wFgCa13Gan7CyEp9hmJlMn7BQN1wAgVuz7bR_qlsah9sl1CBRCS92Y9FXyo26nZnQd9VNI8p_7PkwDJWOf5NtNkjfk_2RcVyZ37rGjMTabmpoyvGavKtcEujjUc_awye9vvqTbb5-_3lxvUy9BjSlVJIU0sBMl1-QzLEloIQiUJjSWo3FaG6qEss7teOm9dVlljDeKG2GNOGfvl737oX-eKIxFWwdPTbO8uTDKSq0yVJF89yLJYb4nZ_DDiyAqjQIlCIjo2__Qp34auvjheJgrNMgxQrBAfuhDGKgq9kPduuFXgVDMBovZYDEbLBaDMXJ12DvtWir_BQ7KInC5ADUR_R1nQgEoEL8B3UCc-A</recordid><startdate>20080201</startdate><enddate>20080201</enddate><creator>Leitgeb, Norbert</creator><creator>Cech, Roman</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20080201</creationdate><title>Dosimetric Assessment of Simultaneous Exposure to ELF Electric and Magnetic Fields</title><author>Leitgeb, Norbert ; Cech, Roman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c506t-efe53580b3d27ec41de3733e067e189218a778ef369aab2dcc9a4f88c86283983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Assessments</topic><topic>Basic restrictions</topic><topic>Biological tissues</topic><topic>Body Burden</topic><topic>Central nervous system</topic><topic>Computer Simulation</topic><topic>Constrictions</topic><topic>Current density</topic><topic>Density</topic><topic>dosimetry</topic><topic>Electric current</topic><topic>Electricity</topic><topic>Electromagnetic Fields</topic><topic>Environmental Exposure - analysis</topic><topic>Fetus</topic><topic>Geophysical measurement techniques</topic><topic>Ground penetrating radar</topic><topic>health risk assessment</topic><topic>Humans</topic><topic>Lead</topic><topic>Magnetic fields</topic><topic>Mathematical models</topic><topic>Models, Biological</topic><topic>Nervous system</topic><topic>Numerical simulation</topic><topic>Protection</topic><topic>reference levels</topic><topic>Relative Biological Effectiveness</topic><topic>Studies</topic><topic>Whole-Body Counting - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leitgeb, Norbert</creatorcontrib><creatorcontrib>Cech, Roman</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leitgeb, Norbert</au><au>Cech, Roman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dosimetric Assessment of Simultaneous Exposure to ELF Electric and Magnetic Fields</atitle><jtitle>IEEE transactions on biomedical engineering</jtitle><stitle>TBME</stitle><addtitle>IEEE Trans Biomed Eng</addtitle><date>2008-02-01</date><risdate>2008</risdate><volume>55</volume><issue>2</issue><spage>671</spage><epage>674</epage><pages>671-674</pages><issn>0018-9294</issn><eissn>1558-2531</eissn><coden>IEBEAX</coden><abstract>In the low-frequency range, both electric and magnetic fields interact with biological tissue by inducing intracorporal electric current densities, although ruled by different physical laws and, hence, with different intracorporal orientation and pathways. Presently, standards require a separate assessment of electric and magnetic fields even in the case of simultaneous exposure and, hence, ignore the superposition of intracorporal current densities. Numerical simulations with the Visible Man model show that this can lead to underestimating current densities in the central nervous system (CNS) by up to 29%. While the superposed electric current densities in the CNS still meet the basic restrictions, the situation changes if a fetus with its own CNS requires the same level of protection. When the compliance volume is extended to the trunk, the reference-level electric-field exposure exceeds the basic restrictions by 38%. Depending on the kind of summation of the vectorial contributions, simultaneous exposure to the 50 Hz-5 kV/m electric field and 100-T magnetic field may lead to a 2.1-fold to 2.6-fold excess of the basic restriction. While this does not prove noncompliance, it indicates that fetal CNS exposure modeling is needed for clarification.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>18270003</pmid><doi>10.1109/TBME.2007.901023</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9294
ispartof IEEE transactions on biomedical engineering, 2008-02, Vol.55 (2), p.671-674
issn 0018-9294
1558-2531
language eng
recordid cdi_proquest_miscellaneous_1671315030
source IEEE Electronic Library (IEL) Journals
subjects Assessments
Basic restrictions
Biological tissues
Body Burden
Central nervous system
Computer Simulation
Constrictions
Current density
Density
dosimetry
Electric current
Electricity
Electromagnetic Fields
Environmental Exposure - analysis
Fetus
Geophysical measurement techniques
Ground penetrating radar
health risk assessment
Humans
Lead
Magnetic fields
Mathematical models
Models, Biological
Nervous system
Numerical simulation
Protection
reference levels
Relative Biological Effectiveness
Studies
Whole-Body Counting - methods
title Dosimetric Assessment of Simultaneous Exposure to ELF Electric and Magnetic Fields
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A00%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dosimetric%20Assessment%20of%20Simultaneous%20Exposure%20to%20ELF%20Electric%20and%20Magnetic%20Fields&rft.jtitle=IEEE%20transactions%20on%20biomedical%20engineering&rft.au=Leitgeb,%20Norbert&rft.date=2008-02-01&rft.volume=55&rft.issue=2&rft.spage=671&rft.epage=674&rft.pages=671-674&rft.issn=0018-9294&rft.eissn=1558-2531&rft.coden=IEBEAX&rft_id=info:doi/10.1109/TBME.2007.901023&rft_dat=%3Cproquest_pubme%3E2324508131%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c506t-efe53580b3d27ec41de3733e067e189218a778ef369aab2dcc9a4f88c86283983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=862618121&rft_id=info:pmid/18270003&rft_ieee_id=4360060&rfr_iscdi=true