Loading…

Quantitative analysis of random ameboid motion

We quantify random migration of the social ameba Dictyostelium discoideum. We demonstrate that the statistics of cell motion can be described by an underlying Langevin-type stochastic differential equation. An analytic expression for the velocity distribution function is derived. The separation into...

Full description

Saved in:
Bibliographic Details
Published in:Europhysics letters 2010-04, Vol.90 (2), p.28005
Main Authors: Bödeker, H. U, Beta, C, Frank, T. D, Bodenschatz, E
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c322t-d85161fe6ff82adf7757ec172f62195c7700859586b919655c898c49a0d0aef93
cites
container_end_page
container_issue 2
container_start_page 28005
container_title Europhysics letters
container_volume 90
creator Bödeker, H. U
Beta, C
Frank, T. D
Bodenschatz, E
description We quantify random migration of the social ameba Dictyostelium discoideum. We demonstrate that the statistics of cell motion can be described by an underlying Langevin-type stochastic differential equation. An analytic expression for the velocity distribution function is derived. The separation into deterministic and stochastic parts of the movement shows that the cells undergo a damped motion with multiplicative noise. Both contributions to the dynamics display a distinct response to external physiological stimuli. The deterministic component depends on the developmental state and ambient levels of signaling substances, while the stochastic part does not.
doi_str_mv 10.1209/0295-5075/90/28005
format article
fullrecord <record><control><sourceid>proquest_iop_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671316391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671316391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-d85161fe6ff82adf7757ec172f62195c7700859586b919655c898c49a0d0aef93</originalsourceid><addsrcrecordid>eNqN0M1Kw0AUBeBBFKzVF3CVpSBp751k_pYqapWCFBXBzTBNZmA0ydRMKvbtbY0UxY2ru_nOgXMJOUYYIQU1BqpYykCwsYIxlQBshwyQSp7mkuW7ZLAF--QgxhcARIl8QEazpWk635nOv9vENKZaRR-T4JLWNGWoE1PbefBlUofOh-aQ7DlTRXv0fYfk8ery4WKSTu-uby7OpmmRUdqlpWTI0VnunKSmdEIwYQsU1HGKihVCAEimmORzhYozVkgli1wZKMFYp7IhOel7F214W9rY6drHwlaVaWxYRo1cYIY8U7imtKdFG2JsrdOL1temXWkEvXmO3mzXm-1agf56zjqU9iEfO_uxTZj2VXORraWEJ33-PJO39_lET3_4sPhf_-lf_9v1Ui9Kl30CZwl_Ow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671316391</pqid></control><display><type>article</type><title>Quantitative analysis of random ameboid motion</title><source>Institute of Physics</source><creator>Bödeker, H. U ; Beta, C ; Frank, T. D ; Bodenschatz, E</creator><creatorcontrib>Bödeker, H. U ; Beta, C ; Frank, T. D ; Bodenschatz, E</creatorcontrib><description>We quantify random migration of the social ameba Dictyostelium discoideum. We demonstrate that the statistics of cell motion can be described by an underlying Langevin-type stochastic differential equation. An analytic expression for the velocity distribution function is derived. The separation into deterministic and stochastic parts of the movement shows that the cells undergo a damped motion with multiplicative noise. Both contributions to the dynamics display a distinct response to external physiological stimuli. The deterministic component depends on the developmental state and ambient levels of signaling substances, while the stochastic part does not.</description><identifier>ISSN: 0295-5075</identifier><identifier>EISSN: 1286-4854</identifier><identifier>DOI: 10.1209/0295-5075/90/28005</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>05.10.Gg ; 05.40.Fb ; 87.17.Jj ; Differential equations ; Exact solutions ; Mathematical analysis ; Migration ; Quantitative analysis ; Statistics ; Stimuli ; Stochasticity ; Velocity distribution</subject><ispartof>Europhysics letters, 2010-04, Vol.90 (2), p.28005</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-d85161fe6ff82adf7757ec172f62195c7700859586b919655c898c49a0d0aef93</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bödeker, H. U</creatorcontrib><creatorcontrib>Beta, C</creatorcontrib><creatorcontrib>Frank, T. D</creatorcontrib><creatorcontrib>Bodenschatz, E</creatorcontrib><title>Quantitative analysis of random ameboid motion</title><title>Europhysics letters</title><description>We quantify random migration of the social ameba Dictyostelium discoideum. We demonstrate that the statistics of cell motion can be described by an underlying Langevin-type stochastic differential equation. An analytic expression for the velocity distribution function is derived. The separation into deterministic and stochastic parts of the movement shows that the cells undergo a damped motion with multiplicative noise. Both contributions to the dynamics display a distinct response to external physiological stimuli. The deterministic component depends on the developmental state and ambient levels of signaling substances, while the stochastic part does not.</description><subject>05.10.Gg</subject><subject>05.40.Fb</subject><subject>87.17.Jj</subject><subject>Differential equations</subject><subject>Exact solutions</subject><subject>Mathematical analysis</subject><subject>Migration</subject><subject>Quantitative analysis</subject><subject>Statistics</subject><subject>Stimuli</subject><subject>Stochasticity</subject><subject>Velocity distribution</subject><issn>0295-5075</issn><issn>1286-4854</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqN0M1Kw0AUBeBBFKzVF3CVpSBp751k_pYqapWCFBXBzTBNZmA0ydRMKvbtbY0UxY2ru_nOgXMJOUYYIQU1BqpYykCwsYIxlQBshwyQSp7mkuW7ZLAF--QgxhcARIl8QEazpWk635nOv9vENKZaRR-T4JLWNGWoE1PbefBlUofOh-aQ7DlTRXv0fYfk8ery4WKSTu-uby7OpmmRUdqlpWTI0VnunKSmdEIwYQsU1HGKihVCAEimmORzhYozVkgli1wZKMFYp7IhOel7F214W9rY6drHwlaVaWxYRo1cYIY8U7imtKdFG2JsrdOL1temXWkEvXmO3mzXm-1agf56zjqU9iEfO_uxTZj2VXORraWEJ33-PJO39_lET3_4sPhf_-lf_9v1Ui9Kl30CZwl_Ow</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>Bödeker, H. U</creator><creator>Beta, C</creator><creator>Frank, T. D</creator><creator>Bodenschatz, E</creator><general>IOP Publishing</general><general>EDP Sciences</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20100401</creationdate><title>Quantitative analysis of random ameboid motion</title><author>Bödeker, H. U ; Beta, C ; Frank, T. D ; Bodenschatz, E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-d85161fe6ff82adf7757ec172f62195c7700859586b919655c898c49a0d0aef93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>05.10.Gg</topic><topic>05.40.Fb</topic><topic>87.17.Jj</topic><topic>Differential equations</topic><topic>Exact solutions</topic><topic>Mathematical analysis</topic><topic>Migration</topic><topic>Quantitative analysis</topic><topic>Statistics</topic><topic>Stimuli</topic><topic>Stochasticity</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bödeker, H. U</creatorcontrib><creatorcontrib>Beta, C</creatorcontrib><creatorcontrib>Frank, T. D</creatorcontrib><creatorcontrib>Bodenschatz, E</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Europhysics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bödeker, H. U</au><au>Beta, C</au><au>Frank, T. D</au><au>Bodenschatz, E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative analysis of random ameboid motion</atitle><jtitle>Europhysics letters</jtitle><date>2010-04-01</date><risdate>2010</risdate><volume>90</volume><issue>2</issue><spage>28005</spage><pages>28005-</pages><issn>0295-5075</issn><eissn>1286-4854</eissn><abstract>We quantify random migration of the social ameba Dictyostelium discoideum. We demonstrate that the statistics of cell motion can be described by an underlying Langevin-type stochastic differential equation. An analytic expression for the velocity distribution function is derived. The separation into deterministic and stochastic parts of the movement shows that the cells undergo a damped motion with multiplicative noise. Both contributions to the dynamics display a distinct response to external physiological stimuli. The deterministic component depends on the developmental state and ambient levels of signaling substances, while the stochastic part does not.</abstract><pub>IOP Publishing</pub><doi>10.1209/0295-5075/90/28005</doi></addata></record>
fulltext fulltext
identifier ISSN: 0295-5075
ispartof Europhysics letters, 2010-04, Vol.90 (2), p.28005
issn 0295-5075
1286-4854
language eng
recordid cdi_proquest_miscellaneous_1671316391
source Institute of Physics
subjects 05.10.Gg
05.40.Fb
87.17.Jj
Differential equations
Exact solutions
Mathematical analysis
Migration
Quantitative analysis
Statistics
Stimuli
Stochasticity
Velocity distribution
title Quantitative analysis of random ameboid motion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T19%3A05%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20analysis%20of%20random%20ameboid%20motion&rft.jtitle=Europhysics%20letters&rft.au=B%C3%B6deker,%20H.%20U&rft.date=2010-04-01&rft.volume=90&rft.issue=2&rft.spage=28005&rft.pages=28005-&rft.issn=0295-5075&rft.eissn=1286-4854&rft_id=info:doi/10.1209/0295-5075/90/28005&rft_dat=%3Cproquest_iop_p%3E1671316391%3C/proquest_iop_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c322t-d85161fe6ff82adf7757ec172f62195c7700859586b919655c898c49a0d0aef93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671316391&rft_id=info:pmid/&rfr_iscdi=true