Loading…
Quantitative analysis of random ameboid motion
We quantify random migration of the social ameba Dictyostelium discoideum. We demonstrate that the statistics of cell motion can be described by an underlying Langevin-type stochastic differential equation. An analytic expression for the velocity distribution function is derived. The separation into...
Saved in:
Published in: | Europhysics letters 2010-04, Vol.90 (2), p.28005 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c322t-d85161fe6ff82adf7757ec172f62195c7700859586b919655c898c49a0d0aef93 |
---|---|
cites | |
container_end_page | |
container_issue | 2 |
container_start_page | 28005 |
container_title | Europhysics letters |
container_volume | 90 |
creator | Bödeker, H. U Beta, C Frank, T. D Bodenschatz, E |
description | We quantify random migration of the social ameba Dictyostelium discoideum. We demonstrate that the statistics of cell motion can be described by an underlying Langevin-type stochastic differential equation. An analytic expression for the velocity distribution function is derived. The separation into deterministic and stochastic parts of the movement shows that the cells undergo a damped motion with multiplicative noise. Both contributions to the dynamics display a distinct response to external physiological stimuli. The deterministic component depends on the developmental state and ambient levels of signaling substances, while the stochastic part does not. |
doi_str_mv | 10.1209/0295-5075/90/28005 |
format | article |
fullrecord | <record><control><sourceid>proquest_iop_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671316391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671316391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-d85161fe6ff82adf7757ec172f62195c7700859586b919655c898c49a0d0aef93</originalsourceid><addsrcrecordid>eNqN0M1Kw0AUBeBBFKzVF3CVpSBp751k_pYqapWCFBXBzTBNZmA0ydRMKvbtbY0UxY2ru_nOgXMJOUYYIQU1BqpYykCwsYIxlQBshwyQSp7mkuW7ZLAF--QgxhcARIl8QEazpWk635nOv9vENKZaRR-T4JLWNGWoE1PbefBlUofOh-aQ7DlTRXv0fYfk8ery4WKSTu-uby7OpmmRUdqlpWTI0VnunKSmdEIwYQsU1HGKihVCAEimmORzhYozVkgli1wZKMFYp7IhOel7F214W9rY6drHwlaVaWxYRo1cYIY8U7imtKdFG2JsrdOL1temXWkEvXmO3mzXm-1agf56zjqU9iEfO_uxTZj2VXORraWEJ33-PJO39_lET3_4sPhf_-lf_9v1Ui9Kl30CZwl_Ow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671316391</pqid></control><display><type>article</type><title>Quantitative analysis of random ameboid motion</title><source>Institute of Physics</source><creator>Bödeker, H. U ; Beta, C ; Frank, T. D ; Bodenschatz, E</creator><creatorcontrib>Bödeker, H. U ; Beta, C ; Frank, T. D ; Bodenschatz, E</creatorcontrib><description>We quantify random migration of the social ameba Dictyostelium discoideum. We demonstrate that the statistics of cell motion can be described by an underlying Langevin-type stochastic differential equation. An analytic expression for the velocity distribution function is derived. The separation into deterministic and stochastic parts of the movement shows that the cells undergo a damped motion with multiplicative noise. Both contributions to the dynamics display a distinct response to external physiological stimuli. The deterministic component depends on the developmental state and ambient levels of signaling substances, while the stochastic part does not.</description><identifier>ISSN: 0295-5075</identifier><identifier>EISSN: 1286-4854</identifier><identifier>DOI: 10.1209/0295-5075/90/28005</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>05.10.Gg ; 05.40.Fb ; 87.17.Jj ; Differential equations ; Exact solutions ; Mathematical analysis ; Migration ; Quantitative analysis ; Statistics ; Stimuli ; Stochasticity ; Velocity distribution</subject><ispartof>Europhysics letters, 2010-04, Vol.90 (2), p.28005</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-d85161fe6ff82adf7757ec172f62195c7700859586b919655c898c49a0d0aef93</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bödeker, H. U</creatorcontrib><creatorcontrib>Beta, C</creatorcontrib><creatorcontrib>Frank, T. D</creatorcontrib><creatorcontrib>Bodenschatz, E</creatorcontrib><title>Quantitative analysis of random ameboid motion</title><title>Europhysics letters</title><description>We quantify random migration of the social ameba Dictyostelium discoideum. We demonstrate that the statistics of cell motion can be described by an underlying Langevin-type stochastic differential equation. An analytic expression for the velocity distribution function is derived. The separation into deterministic and stochastic parts of the movement shows that the cells undergo a damped motion with multiplicative noise. Both contributions to the dynamics display a distinct response to external physiological stimuli. The deterministic component depends on the developmental state and ambient levels of signaling substances, while the stochastic part does not.</description><subject>05.10.Gg</subject><subject>05.40.Fb</subject><subject>87.17.Jj</subject><subject>Differential equations</subject><subject>Exact solutions</subject><subject>Mathematical analysis</subject><subject>Migration</subject><subject>Quantitative analysis</subject><subject>Statistics</subject><subject>Stimuli</subject><subject>Stochasticity</subject><subject>Velocity distribution</subject><issn>0295-5075</issn><issn>1286-4854</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqN0M1Kw0AUBeBBFKzVF3CVpSBp751k_pYqapWCFBXBzTBNZmA0ydRMKvbtbY0UxY2ru_nOgXMJOUYYIQU1BqpYykCwsYIxlQBshwyQSp7mkuW7ZLAF--QgxhcARIl8QEazpWk635nOv9vENKZaRR-T4JLWNGWoE1PbefBlUofOh-aQ7DlTRXv0fYfk8ery4WKSTu-uby7OpmmRUdqlpWTI0VnunKSmdEIwYQsU1HGKihVCAEimmORzhYozVkgli1wZKMFYp7IhOel7F214W9rY6drHwlaVaWxYRo1cYIY8U7imtKdFG2JsrdOL1temXWkEvXmO3mzXm-1agf56zjqU9iEfO_uxTZj2VXORraWEJ33-PJO39_lET3_4sPhf_-lf_9v1Ui9Kl30CZwl_Ow</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>Bödeker, H. U</creator><creator>Beta, C</creator><creator>Frank, T. D</creator><creator>Bodenschatz, E</creator><general>IOP Publishing</general><general>EDP Sciences</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20100401</creationdate><title>Quantitative analysis of random ameboid motion</title><author>Bödeker, H. U ; Beta, C ; Frank, T. D ; Bodenschatz, E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-d85161fe6ff82adf7757ec172f62195c7700859586b919655c898c49a0d0aef93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>05.10.Gg</topic><topic>05.40.Fb</topic><topic>87.17.Jj</topic><topic>Differential equations</topic><topic>Exact solutions</topic><topic>Mathematical analysis</topic><topic>Migration</topic><topic>Quantitative analysis</topic><topic>Statistics</topic><topic>Stimuli</topic><topic>Stochasticity</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bödeker, H. U</creatorcontrib><creatorcontrib>Beta, C</creatorcontrib><creatorcontrib>Frank, T. D</creatorcontrib><creatorcontrib>Bodenschatz, E</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Europhysics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bödeker, H. U</au><au>Beta, C</au><au>Frank, T. D</au><au>Bodenschatz, E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative analysis of random ameboid motion</atitle><jtitle>Europhysics letters</jtitle><date>2010-04-01</date><risdate>2010</risdate><volume>90</volume><issue>2</issue><spage>28005</spage><pages>28005-</pages><issn>0295-5075</issn><eissn>1286-4854</eissn><abstract>We quantify random migration of the social ameba Dictyostelium discoideum. We demonstrate that the statistics of cell motion can be described by an underlying Langevin-type stochastic differential equation. An analytic expression for the velocity distribution function is derived. The separation into deterministic and stochastic parts of the movement shows that the cells undergo a damped motion with multiplicative noise. Both contributions to the dynamics display a distinct response to external physiological stimuli. The deterministic component depends on the developmental state and ambient levels of signaling substances, while the stochastic part does not.</abstract><pub>IOP Publishing</pub><doi>10.1209/0295-5075/90/28005</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0295-5075 |
ispartof | Europhysics letters, 2010-04, Vol.90 (2), p.28005 |
issn | 0295-5075 1286-4854 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671316391 |
source | Institute of Physics |
subjects | 05.10.Gg 05.40.Fb 87.17.Jj Differential equations Exact solutions Mathematical analysis Migration Quantitative analysis Statistics Stimuli Stochasticity Velocity distribution |
title | Quantitative analysis of random ameboid motion |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T19%3A05%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20analysis%20of%20random%20ameboid%20motion&rft.jtitle=Europhysics%20letters&rft.au=B%C3%B6deker,%20H.%20U&rft.date=2010-04-01&rft.volume=90&rft.issue=2&rft.spage=28005&rft.pages=28005-&rft.issn=0295-5075&rft.eissn=1286-4854&rft_id=info:doi/10.1209/0295-5075/90/28005&rft_dat=%3Cproquest_iop_p%3E1671316391%3C/proquest_iop_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c322t-d85161fe6ff82adf7757ec172f62195c7700859586b919655c898c49a0d0aef93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671316391&rft_id=info:pmid/&rfr_iscdi=true |