Loading…

Multi-objective optimisation on the basis of random models for ethylene oxide

This paper is part of our pursuit to develop an efficient procedure for optimising parameters that provide a reliable foundation for highly predictive molecular simulations. We tested whether DesParO, a mathematical tool originally used in automotive design, is suitable for creating Lennard-Jones (L...

Full description

Saved in:
Bibliographic Details
Published in:Molecular simulation 2010-12, Vol.36 (15), p.1208-1218
Main Authors: Maaß, Astrid, Nikitina, Lialia, Clees, Tanja, Kirschner, Karl N., Reith, Dirk
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c411t-9dac1f82fde449d0e03a1f6a226c6854e54c30e2c211652caaccd0c873a9c8253
cites cdi_FETCH-LOGICAL-c411t-9dac1f82fde449d0e03a1f6a226c6854e54c30e2c211652caaccd0c873a9c8253
container_end_page 1218
container_issue 15
container_start_page 1208
container_title Molecular simulation
container_volume 36
creator Maaß, Astrid
Nikitina, Lialia
Clees, Tanja
Kirschner, Karl N.
Reith, Dirk
description This paper is part of our pursuit to develop an efficient procedure for optimising parameters that provide a reliable foundation for highly predictive molecular simulations. We tested whether DesParO, a mathematical tool originally used in automotive design, is suitable for creating Lennard-Jones (LJ) parameters that accurately reproduce the experimental phase behaviour for our test compound ethylene oxide (EO). So, we created a multitude of diverse random parameter sets, performed Gibbs ensemble Monte Carlo simulations and collected the resulting physical properties. On that data basis, DesParO derived a meta-model through a multidimensional interpolation. We then explored, in an interactive fashion unique to DesParO, the LJ parameter space and selected some suitable parameter sets, which were then tested by simulations. For EO, the selected parameter sets were indeed superior to the initial parameters. Furthermore, the new parameters can be reliably used as input for further optimisation by other methods, resulting in extremely robust LJ parameters. Beyond the prediction of parameter sets, DesParO enabled us to examine the underlying parameter-property relationships that help us solve future optimisation problems by creating subordinate parameter optimisation tasks in a systematic manner; this ability makes DesParO a valuable tool in the overall optimisation process.
doi_str_mv 10.1080/08927020903483312
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671321152</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>901649070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-9dac1f82fde449d0e03a1f6a226c6854e54c30e2c211652caaccd0c873a9c8253</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKs_wFtuelmdSbJf4EWKX9DiRc9Lmk1oyu6mJqm2_96UeisqDMxhnmdmeAm5RLhBqOAWqpqVwKAGLirOkR2REQKrMxA8Pyaj3TxLADslZyEsARjmohiR2WzdRZu5-VKraD81datoextktG6gqeJC07kMNlBnqJdD63rau1Z3gRrnqY6LbaeH5G1sq8_JiZFd0Bc_fUzeHx_eJs_Z9PXpZXI_zZRAjFndSoWmYqbVQtQtaOASTSEZK1RR5ULnQnHQTDHEImdKSqVaUFXJZa0qlvMxudrvXXn3sdYhNullpbtODtqtQ1MDFqKGEhJ5_SeJRYk8nclZQnGPKu9C8No0K2976bcNQrMLuTkIOTnl3rFDSqOXX853bRPltnPepLSUDYdWEzcxmXf_mvz3w98NUJQP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671321152</pqid></control><display><type>article</type><title>Multi-objective optimisation on the basis of random models for ethylene oxide</title><source>Taylor and Francis Science and Technology Collection</source><creator>Maaß, Astrid ; Nikitina, Lialia ; Clees, Tanja ; Kirschner, Karl N. ; Reith, Dirk</creator><creatorcontrib>Maaß, Astrid ; Nikitina, Lialia ; Clees, Tanja ; Kirschner, Karl N. ; Reith, Dirk</creatorcontrib><description>This paper is part of our pursuit to develop an efficient procedure for optimising parameters that provide a reliable foundation for highly predictive molecular simulations. We tested whether DesParO, a mathematical tool originally used in automotive design, is suitable for creating Lennard-Jones (LJ) parameters that accurately reproduce the experimental phase behaviour for our test compound ethylene oxide (EO). So, we created a multitude of diverse random parameter sets, performed Gibbs ensemble Monte Carlo simulations and collected the resulting physical properties. On that data basis, DesParO derived a meta-model through a multidimensional interpolation. We then explored, in an interactive fashion unique to DesParO, the LJ parameter space and selected some suitable parameter sets, which were then tested by simulations. For EO, the selected parameter sets were indeed superior to the initial parameters. Furthermore, the new parameters can be reliably used as input for further optimisation by other methods, resulting in extremely robust LJ parameters. Beyond the prediction of parameter sets, DesParO enabled us to examine the underlying parameter-property relationships that help us solve future optimisation problems by creating subordinate parameter optimisation tasks in a systematic manner; this ability makes DesParO a valuable tool in the overall optimisation process.</description><identifier>ISSN: 0892-7022</identifier><identifier>EISSN: 1029-0435</identifier><identifier>DOI: 10.1080/08927020903483312</identifier><language>eng</language><publisher>Taylor &amp; Francis Group</publisher><subject>Automotive components ; Computer simulation ; DesParO ; Ethylene oxide ; force field ; GROW ; Interpolation ; Mathematical models ; meta-model ; Monte Carlo methods ; Optimization ; parameter optimisation</subject><ispartof>Molecular simulation, 2010-12, Vol.36 (15), p.1208-1218</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-9dac1f82fde449d0e03a1f6a226c6854e54c30e2c211652caaccd0c873a9c8253</citedby><cites>FETCH-LOGICAL-c411t-9dac1f82fde449d0e03a1f6a226c6854e54c30e2c211652caaccd0c873a9c8253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Maaß, Astrid</creatorcontrib><creatorcontrib>Nikitina, Lialia</creatorcontrib><creatorcontrib>Clees, Tanja</creatorcontrib><creatorcontrib>Kirschner, Karl N.</creatorcontrib><creatorcontrib>Reith, Dirk</creatorcontrib><title>Multi-objective optimisation on the basis of random models for ethylene oxide</title><title>Molecular simulation</title><description>This paper is part of our pursuit to develop an efficient procedure for optimising parameters that provide a reliable foundation for highly predictive molecular simulations. We tested whether DesParO, a mathematical tool originally used in automotive design, is suitable for creating Lennard-Jones (LJ) parameters that accurately reproduce the experimental phase behaviour for our test compound ethylene oxide (EO). So, we created a multitude of diverse random parameter sets, performed Gibbs ensemble Monte Carlo simulations and collected the resulting physical properties. On that data basis, DesParO derived a meta-model through a multidimensional interpolation. We then explored, in an interactive fashion unique to DesParO, the LJ parameter space and selected some suitable parameter sets, which were then tested by simulations. For EO, the selected parameter sets were indeed superior to the initial parameters. Furthermore, the new parameters can be reliably used as input for further optimisation by other methods, resulting in extremely robust LJ parameters. Beyond the prediction of parameter sets, DesParO enabled us to examine the underlying parameter-property relationships that help us solve future optimisation problems by creating subordinate parameter optimisation tasks in a systematic manner; this ability makes DesParO a valuable tool in the overall optimisation process.</description><subject>Automotive components</subject><subject>Computer simulation</subject><subject>DesParO</subject><subject>Ethylene oxide</subject><subject>force field</subject><subject>GROW</subject><subject>Interpolation</subject><subject>Mathematical models</subject><subject>meta-model</subject><subject>Monte Carlo methods</subject><subject>Optimization</subject><subject>parameter optimisation</subject><issn>0892-7022</issn><issn>1029-0435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKs_wFtuelmdSbJf4EWKX9DiRc9Lmk1oyu6mJqm2_96UeisqDMxhnmdmeAm5RLhBqOAWqpqVwKAGLirOkR2REQKrMxA8Pyaj3TxLADslZyEsARjmohiR2WzdRZu5-VKraD81datoextktG6gqeJC07kMNlBnqJdD63rau1Z3gRrnqY6LbaeH5G1sq8_JiZFd0Bc_fUzeHx_eJs_Z9PXpZXI_zZRAjFndSoWmYqbVQtQtaOASTSEZK1RR5ULnQnHQTDHEImdKSqVaUFXJZa0qlvMxudrvXXn3sdYhNullpbtODtqtQ1MDFqKGEhJ5_SeJRYk8nclZQnGPKu9C8No0K2976bcNQrMLuTkIOTnl3rFDSqOXX853bRPltnPepLSUDYdWEzcxmXf_mvz3w98NUJQP</recordid><startdate>201012</startdate><enddate>201012</enddate><creator>Maaß, Astrid</creator><creator>Nikitina, Lialia</creator><creator>Clees, Tanja</creator><creator>Kirschner, Karl N.</creator><creator>Reith, Dirk</creator><general>Taylor &amp; Francis Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201012</creationdate><title>Multi-objective optimisation on the basis of random models for ethylene oxide</title><author>Maaß, Astrid ; Nikitina, Lialia ; Clees, Tanja ; Kirschner, Karl N. ; Reith, Dirk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-9dac1f82fde449d0e03a1f6a226c6854e54c30e2c211652caaccd0c873a9c8253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Automotive components</topic><topic>Computer simulation</topic><topic>DesParO</topic><topic>Ethylene oxide</topic><topic>force field</topic><topic>GROW</topic><topic>Interpolation</topic><topic>Mathematical models</topic><topic>meta-model</topic><topic>Monte Carlo methods</topic><topic>Optimization</topic><topic>parameter optimisation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maaß, Astrid</creatorcontrib><creatorcontrib>Nikitina, Lialia</creatorcontrib><creatorcontrib>Clees, Tanja</creatorcontrib><creatorcontrib>Kirschner, Karl N.</creatorcontrib><creatorcontrib>Reith, Dirk</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Molecular simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maaß, Astrid</au><au>Nikitina, Lialia</au><au>Clees, Tanja</au><au>Kirschner, Karl N.</au><au>Reith, Dirk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-objective optimisation on the basis of random models for ethylene oxide</atitle><jtitle>Molecular simulation</jtitle><date>2010-12</date><risdate>2010</risdate><volume>36</volume><issue>15</issue><spage>1208</spage><epage>1218</epage><pages>1208-1218</pages><issn>0892-7022</issn><eissn>1029-0435</eissn><abstract>This paper is part of our pursuit to develop an efficient procedure for optimising parameters that provide a reliable foundation for highly predictive molecular simulations. We tested whether DesParO, a mathematical tool originally used in automotive design, is suitable for creating Lennard-Jones (LJ) parameters that accurately reproduce the experimental phase behaviour for our test compound ethylene oxide (EO). So, we created a multitude of diverse random parameter sets, performed Gibbs ensemble Monte Carlo simulations and collected the resulting physical properties. On that data basis, DesParO derived a meta-model through a multidimensional interpolation. We then explored, in an interactive fashion unique to DesParO, the LJ parameter space and selected some suitable parameter sets, which were then tested by simulations. For EO, the selected parameter sets were indeed superior to the initial parameters. Furthermore, the new parameters can be reliably used as input for further optimisation by other methods, resulting in extremely robust LJ parameters. Beyond the prediction of parameter sets, DesParO enabled us to examine the underlying parameter-property relationships that help us solve future optimisation problems by creating subordinate parameter optimisation tasks in a systematic manner; this ability makes DesParO a valuable tool in the overall optimisation process.</abstract><pub>Taylor &amp; Francis Group</pub><doi>10.1080/08927020903483312</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0892-7022
ispartof Molecular simulation, 2010-12, Vol.36 (15), p.1208-1218
issn 0892-7022
1029-0435
language eng
recordid cdi_proquest_miscellaneous_1671321152
source Taylor and Francis Science and Technology Collection
subjects Automotive components
Computer simulation
DesParO
Ethylene oxide
force field
GROW
Interpolation
Mathematical models
meta-model
Monte Carlo methods
Optimization
parameter optimisation
title Multi-objective optimisation on the basis of random models for ethylene oxide
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T04%3A11%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-objective%20optimisation%20on%20the%20basis%20of%20random%20models%20for%20ethylene%20oxide&rft.jtitle=Molecular%20simulation&rft.au=Maa%C3%9F,%20Astrid&rft.date=2010-12&rft.volume=36&rft.issue=15&rft.spage=1208&rft.epage=1218&rft.pages=1208-1218&rft.issn=0892-7022&rft.eissn=1029-0435&rft_id=info:doi/10.1080/08927020903483312&rft_dat=%3Cproquest_cross%3E901649070%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c411t-9dac1f82fde449d0e03a1f6a226c6854e54c30e2c211652caaccd0c873a9c8253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671321152&rft_id=info:pmid/&rfr_iscdi=true