Loading…
Production of Chiral Aromatic Alcohol by Asymmetric Reduction with Vegetable Catalyst
Chiral aromatic alcohols are the key chiral building block for many important enantiopure pharmaceu-ticals. In this work,we studied asymmetric reduction of prochiral aromatic ketone to produce the corresponding chiral alcohol using vegetables as the biocatalyst. Acetophenone was chosen as the model...
Saved in:
Published in: | Chinese journal of chemical engineering 2010-12, Vol.18 (6), p.1029-1033 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Chiral aromatic alcohols are the key chiral building block for many important enantiopure pharmaceu-ticals. In this work,we studied asymmetric reduction of prochiral aromatic ketone to produce the corresponding chiral alcohol using vegetables as the biocatalyst. Acetophenone was chosen as the model substrate. The results in-dicate that acetophenone can be reduced to the corresponding chiral alcohols with high enantioselectivity by the chosen vegetables,i.e. apple(Malus pumila),carrot(Daucus carota),cucumber(Cucumis sativus),onion(Allium cepa),potato(Soanum tuberosum),radish(Raphanus sativus),and sweet potato(Ipomoea batatas) . In the reaction,R-1-phenylethanol is produced with apple,sweet potato and potato as the catalyst,while S-1-phenylethanol is the product with the other vegetables as the catalyst. In term of the enantioselectivity and reaction yield,carrot(D. ca-rota) is the best catalyst for this reaction. Furthermore,the reaction characteristics were studied in detail using car-rot(D. carota) as the biocatalyst. The effects of various factors on the reaction were investigated and the optimal reaction conditions were determined. Under the optimal reaction conditions(reaction time 50 h,substrate concen-tration 20 mmol·L-1,reaction temperature 35 °C and pH 7),95% of e.e.(to S-1-phenylethanol) and 85% chemical yield can be obtained. This work extends the biocatalyst for the asymmetric reduction reaction of prochiral aromatic ketones,and provides a novel potential route to produce enantiopure aromatic alcohols. |
---|---|
ISSN: | 1004-9541 2210-321X |
DOI: | 10.1016/S1004-9541(09)60164-6 |