Loading…
A backward parabolic equation with a time-dependent coefficient: Regularization and error estimates
We consider the problem of determining the temperature u(x,t), for (x,t)∈[0,π]×[0,T) in the parabolic equation with a time-dependent coefficient. This problem is severely ill-posed, i.e., the solution (if it exists) does not depend continuously on the given data. In this paper, we use a modified met...
Saved in:
Published in: | Journal of computational and applied mathematics 2013-01, Vol.237 (1), p.432-441 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c373t-4de28be1558dccfa010a4b196941fe8d5c7139985ac75672b61d5450cd5ed42b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c373t-4de28be1558dccfa010a4b196941fe8d5c7139985ac75672b61d5450cd5ed42b3 |
container_end_page | 441 |
container_issue | 1 |
container_start_page | 432 |
container_title | Journal of computational and applied mathematics |
container_volume | 237 |
creator | Le, Triet Minh Pham, Quan Hoang Dang, Trong Duc Nguyen, Tuan Huy |
description | We consider the problem of determining the temperature u(x,t), for (x,t)∈[0,π]×[0,T) in the parabolic equation with a time-dependent coefficient. This problem is severely ill-posed, i.e., the solution (if it exists) does not depend continuously on the given data. In this paper, we use a modified method for regularizing the problem and derive an optimal stability estimation. A numerical experiment is presented for illustrating the estimate. |
doi_str_mv | 10.1016/j.cam.2012.06.012 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671324315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042712002476</els_id><sourcerecordid>1671324315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-4de28be1558dccfa010a4b196941fe8d5c7139985ac75672b61d5450cd5ed42b3</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwANx85JLgTWI7gVNV8SdVQkJwthx7Ay5pktopFTw9rsKZ0-xhvtndIeQSWAoMxPU6NXqTZgyylIk0yhGZQSmrBKQsj8mM5VImrMjkKTkLYc0YExUUM2IWtNbmc6-9pYP2uu5bZyhud3p0fUf3bvygmo5ug4nFATuL3UhNj03jjIvzDX3B912rvfuZCN1Zit73nmKImB4xnJOTRrcBL_50Tt7u716Xj8nq-eFpuVglJpf5mBQWs7JG4Ly0xjSaAdNFDZWoCmiwtNxIyKuq5NpILmRWC7C84MxYjrbI6nxOrqbcwffbXVyvNi4YbFvdYb8LCkQMyIoceLTCZDW-D8FjowYfj_XfCpg6FKrWKhaqDoUqJlSUyNxODMYfvhx6FQ4VGLTOoxmV7d0_9C-0M38m</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671324315</pqid></control><display><type>article</type><title>A backward parabolic equation with a time-dependent coefficient: Regularization and error estimates</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Le, Triet Minh ; Pham, Quan Hoang ; Dang, Trong Duc ; Nguyen, Tuan Huy</creator><creatorcontrib>Le, Triet Minh ; Pham, Quan Hoang ; Dang, Trong Duc ; Nguyen, Tuan Huy</creatorcontrib><description>We consider the problem of determining the temperature u(x,t), for (x,t)∈[0,π]×[0,T) in the parabolic equation with a time-dependent coefficient. This problem is severely ill-posed, i.e., the solution (if it exists) does not depend continuously on the given data. In this paper, we use a modified method for regularizing the problem and derive an optimal stability estimation. A numerical experiment is presented for illustrating the estimate.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2012.06.012</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Backward problem ; Coefficients ; Computation ; Estimates ; Ill-posed problem ; Mathematical analysis ; Mathematical models ; Nonhomogeneous ; Optimization ; Parabolic equation ; Regularization ; Stability ; Time-dependent coefficient</subject><ispartof>Journal of computational and applied mathematics, 2013-01, Vol.237 (1), p.432-441</ispartof><rights>2012 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-4de28be1558dccfa010a4b196941fe8d5c7139985ac75672b61d5450cd5ed42b3</citedby><cites>FETCH-LOGICAL-c373t-4de28be1558dccfa010a4b196941fe8d5c7139985ac75672b61d5450cd5ed42b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Le, Triet Minh</creatorcontrib><creatorcontrib>Pham, Quan Hoang</creatorcontrib><creatorcontrib>Dang, Trong Duc</creatorcontrib><creatorcontrib>Nguyen, Tuan Huy</creatorcontrib><title>A backward parabolic equation with a time-dependent coefficient: Regularization and error estimates</title><title>Journal of computational and applied mathematics</title><description>We consider the problem of determining the temperature u(x,t), for (x,t)∈[0,π]×[0,T) in the parabolic equation with a time-dependent coefficient. This problem is severely ill-posed, i.e., the solution (if it exists) does not depend continuously on the given data. In this paper, we use a modified method for regularizing the problem and derive an optimal stability estimation. A numerical experiment is presented for illustrating the estimate.</description><subject>Backward problem</subject><subject>Coefficients</subject><subject>Computation</subject><subject>Estimates</subject><subject>Ill-posed problem</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nonhomogeneous</subject><subject>Optimization</subject><subject>Parabolic equation</subject><subject>Regularization</subject><subject>Stability</subject><subject>Time-dependent coefficient</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwANx85JLgTWI7gVNV8SdVQkJwthx7Ay5pktopFTw9rsKZ0-xhvtndIeQSWAoMxPU6NXqTZgyylIk0yhGZQSmrBKQsj8mM5VImrMjkKTkLYc0YExUUM2IWtNbmc6-9pYP2uu5bZyhud3p0fUf3bvygmo5ug4nFATuL3UhNj03jjIvzDX3B912rvfuZCN1Zit73nmKImB4xnJOTRrcBL_50Tt7u716Xj8nq-eFpuVglJpf5mBQWs7JG4Ly0xjSaAdNFDZWoCmiwtNxIyKuq5NpILmRWC7C84MxYjrbI6nxOrqbcwffbXVyvNi4YbFvdYb8LCkQMyIoceLTCZDW-D8FjowYfj_XfCpg6FKrWKhaqDoUqJlSUyNxODMYfvhx6FQ4VGLTOoxmV7d0_9C-0M38m</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Le, Triet Minh</creator><creator>Pham, Quan Hoang</creator><creator>Dang, Trong Duc</creator><creator>Nguyen, Tuan Huy</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130101</creationdate><title>A backward parabolic equation with a time-dependent coefficient: Regularization and error estimates</title><author>Le, Triet Minh ; Pham, Quan Hoang ; Dang, Trong Duc ; Nguyen, Tuan Huy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-4de28be1558dccfa010a4b196941fe8d5c7139985ac75672b61d5450cd5ed42b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Backward problem</topic><topic>Coefficients</topic><topic>Computation</topic><topic>Estimates</topic><topic>Ill-posed problem</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nonhomogeneous</topic><topic>Optimization</topic><topic>Parabolic equation</topic><topic>Regularization</topic><topic>Stability</topic><topic>Time-dependent coefficient</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Le, Triet Minh</creatorcontrib><creatorcontrib>Pham, Quan Hoang</creatorcontrib><creatorcontrib>Dang, Trong Duc</creatorcontrib><creatorcontrib>Nguyen, Tuan Huy</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Le, Triet Minh</au><au>Pham, Quan Hoang</au><au>Dang, Trong Duc</au><au>Nguyen, Tuan Huy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A backward parabolic equation with a time-dependent coefficient: Regularization and error estimates</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>237</volume><issue>1</issue><spage>432</spage><epage>441</epage><pages>432-441</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><abstract>We consider the problem of determining the temperature u(x,t), for (x,t)∈[0,π]×[0,T) in the parabolic equation with a time-dependent coefficient. This problem is severely ill-posed, i.e., the solution (if it exists) does not depend continuously on the given data. In this paper, we use a modified method for regularizing the problem and derive an optimal stability estimation. A numerical experiment is presented for illustrating the estimate.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2012.06.012</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-0427 |
ispartof | Journal of computational and applied mathematics, 2013-01, Vol.237 (1), p.432-441 |
issn | 0377-0427 1879-1778 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671324315 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Backward problem Coefficients Computation Estimates Ill-posed problem Mathematical analysis Mathematical models Nonhomogeneous Optimization Parabolic equation Regularization Stability Time-dependent coefficient |
title | A backward parabolic equation with a time-dependent coefficient: Regularization and error estimates |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A52%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20backward%20parabolic%20equation%20with%20a%20time-dependent%20coefficient:%20Regularization%20and%20error%20estimates&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Le,%20Triet%20Minh&rft.date=2013-01-01&rft.volume=237&rft.issue=1&rft.spage=432&rft.epage=441&rft.pages=432-441&rft.issn=0377-0427&rft.eissn=1879-1778&rft_id=info:doi/10.1016/j.cam.2012.06.012&rft_dat=%3Cproquest_cross%3E1671324315%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c373t-4de28be1558dccfa010a4b196941fe8d5c7139985ac75672b61d5450cd5ed42b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671324315&rft_id=info:pmid/&rfr_iscdi=true |