Loading…

Comparison of the density-matrix renormalization group method applied to fractional quantum Hall systems in different geometries

We report a systematic study of the fractional quantum Hall effect (FQHE) using the density-matrix renormalization group (DMRG) method on two different geometries: the sphere and the cylinder. We provide convergence benchmarks based on model Hamiltonians known to possess exact zero-energy ground sta...

Full description

Saved in:
Bibliographic Details
Published in:Physics letters. A 2012-06, Vol.376 (30-31), p.2157-2161
Main Authors: Hu, Zi-Xiang, Papić, Z., Johri, S., Bhatt, R.N., Schmitteckert, Peter
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c378t-768e382a0a58287db8842b77ca0dd44f2dd02e07a297ca7e97672a62f3b140833
cites cdi_FETCH-LOGICAL-c378t-768e382a0a58287db8842b77ca0dd44f2dd02e07a297ca7e97672a62f3b140833
container_end_page 2161
container_issue 30-31
container_start_page 2157
container_title Physics letters. A
container_volume 376
creator Hu, Zi-Xiang
Papić, Z.
Johri, S.
Bhatt, R.N.
Schmitteckert, Peter
description We report a systematic study of the fractional quantum Hall effect (FQHE) using the density-matrix renormalization group (DMRG) method on two different geometries: the sphere and the cylinder. We provide convergence benchmarks based on model Hamiltonians known to possess exact zero-energy ground states, as well as an analysis of the number of sweeps and basis elements that need to be kept in order to achieve the desired accuracy. The ground state energies of the Coulomb Hamiltonian at ν=1/3 and ν=5/2 filling are extracted and compared with the results obtained by previous DMRG implementations in the literature. A remarkably rapid convergence in the cylinder geometry is noted and suggests that this boundary condition is particularly suited for the application of the DMRG method to the FQHE. ► FQHE is a two-dimensional physics. ► Density-matrix renormalization group method applied to FQH systems. ► Benchmark study both on sphere and cylinder geometry.
doi_str_mv 10.1016/j.physleta.2012.05.031
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671325340</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0375960112006111</els_id><sourcerecordid>1671325340</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-768e382a0a58287db8842b77ca0dd44f2dd02e07a297ca7e97672a62f3b140833</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhi0EEkvhFZCPXBLGdhI7N9AKKFKlXuBszcaTrldJnNoOYjnx6Hi19NzTSKPv_zSjn7H3AmoBovt4qtfjOU2UsZYgZA1tDUq8YDthtKpkI_uXbAdKt1XfgXjN3qR0AihJ6Hfs7z7MK0afwsLDyPORuKMl-XyuZszR_-aRlhBnnPwfzL5QDzFsK58pH4PjuK6TJ8dz4GPE4QLgxB83XPI281ucJp7OKdOcuF-48-NIxZf5A4ViiJ7SW_ZqxCnRu__zhv38-uXH_ra6u__2ff_5rhqUNrnSnSFlJAK2RhrtDsY08qD1gOBc04zSOZAEGmVfdpp63WmJnRzVQTRglLphH67eNYbHjVK2s08DTRMuFLZkRaeFkq1q4HkUyiVNKxtd0O6KDjGkFGm0a_QzxnOB7KUde7JP7dhLOxZaW9opwU_XIJWff3mKNg2eloGcjzRk64J_TvEPWcme7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1038245247</pqid></control><display><type>article</type><title>Comparison of the density-matrix renormalization group method applied to fractional quantum Hall systems in different geometries</title><source>ScienceDirect Journals</source><creator>Hu, Zi-Xiang ; Papić, Z. ; Johri, S. ; Bhatt, R.N. ; Schmitteckert, Peter</creator><creatorcontrib>Hu, Zi-Xiang ; Papić, Z. ; Johri, S. ; Bhatt, R.N. ; Schmitteckert, Peter</creatorcontrib><description>We report a systematic study of the fractional quantum Hall effect (FQHE) using the density-matrix renormalization group (DMRG) method on two different geometries: the sphere and the cylinder. We provide convergence benchmarks based on model Hamiltonians known to possess exact zero-energy ground states, as well as an analysis of the number of sweeps and basis elements that need to be kept in order to achieve the desired accuracy. The ground state energies of the Coulomb Hamiltonian at ν=1/3 and ν=5/2 filling are extracted and compared with the results obtained by previous DMRG implementations in the literature. A remarkably rapid convergence in the cylinder geometry is noted and suggests that this boundary condition is particularly suited for the application of the DMRG method to the FQHE. ► FQHE is a two-dimensional physics. ► Density-matrix renormalization group method applied to FQH systems. ► Benchmark study both on sphere and cylinder geometry.</description><identifier>ISSN: 0375-9601</identifier><identifier>EISSN: 1873-2429</identifier><identifier>DOI: 10.1016/j.physleta.2012.05.031</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Benchmarks ; Convergence ; Coulomb friction ; Cylinders ; Ground state ; Halls ; Quantum Hall effect ; Solid state physics</subject><ispartof>Physics letters. A, 2012-06, Vol.376 (30-31), p.2157-2161</ispartof><rights>2012 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-768e382a0a58287db8842b77ca0dd44f2dd02e07a297ca7e97672a62f3b140833</citedby><cites>FETCH-LOGICAL-c378t-768e382a0a58287db8842b77ca0dd44f2dd02e07a297ca7e97672a62f3b140833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hu, Zi-Xiang</creatorcontrib><creatorcontrib>Papić, Z.</creatorcontrib><creatorcontrib>Johri, S.</creatorcontrib><creatorcontrib>Bhatt, R.N.</creatorcontrib><creatorcontrib>Schmitteckert, Peter</creatorcontrib><title>Comparison of the density-matrix renormalization group method applied to fractional quantum Hall systems in different geometries</title><title>Physics letters. A</title><description>We report a systematic study of the fractional quantum Hall effect (FQHE) using the density-matrix renormalization group (DMRG) method on two different geometries: the sphere and the cylinder. We provide convergence benchmarks based on model Hamiltonians known to possess exact zero-energy ground states, as well as an analysis of the number of sweeps and basis elements that need to be kept in order to achieve the desired accuracy. The ground state energies of the Coulomb Hamiltonian at ν=1/3 and ν=5/2 filling are extracted and compared with the results obtained by previous DMRG implementations in the literature. A remarkably rapid convergence in the cylinder geometry is noted and suggests that this boundary condition is particularly suited for the application of the DMRG method to the FQHE. ► FQHE is a two-dimensional physics. ► Density-matrix renormalization group method applied to FQH systems. ► Benchmark study both on sphere and cylinder geometry.</description><subject>Benchmarks</subject><subject>Convergence</subject><subject>Coulomb friction</subject><subject>Cylinders</subject><subject>Ground state</subject><subject>Halls</subject><subject>Quantum Hall effect</subject><subject>Solid state physics</subject><issn>0375-9601</issn><issn>1873-2429</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkcFu1DAQhi0EEkvhFZCPXBLGdhI7N9AKKFKlXuBszcaTrldJnNoOYjnx6Hi19NzTSKPv_zSjn7H3AmoBovt4qtfjOU2UsZYgZA1tDUq8YDthtKpkI_uXbAdKt1XfgXjN3qR0AihJ6Hfs7z7MK0afwsLDyPORuKMl-XyuZszR_-aRlhBnnPwfzL5QDzFsK58pH4PjuK6TJ8dz4GPE4QLgxB83XPI281ucJp7OKdOcuF-48-NIxZf5A4ViiJ7SW_ZqxCnRu__zhv38-uXH_ra6u__2ff_5rhqUNrnSnSFlJAK2RhrtDsY08qD1gOBc04zSOZAEGmVfdpp63WmJnRzVQTRglLphH67eNYbHjVK2s08DTRMuFLZkRaeFkq1q4HkUyiVNKxtd0O6KDjGkFGm0a_QzxnOB7KUde7JP7dhLOxZaW9opwU_XIJWff3mKNg2eloGcjzRk64J_TvEPWcme7Q</recordid><startdate>20120618</startdate><enddate>20120618</enddate><creator>Hu, Zi-Xiang</creator><creator>Papić, Z.</creator><creator>Johri, S.</creator><creator>Bhatt, R.N.</creator><creator>Schmitteckert, Peter</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20120618</creationdate><title>Comparison of the density-matrix renormalization group method applied to fractional quantum Hall systems in different geometries</title><author>Hu, Zi-Xiang ; Papić, Z. ; Johri, S. ; Bhatt, R.N. ; Schmitteckert, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-768e382a0a58287db8842b77ca0dd44f2dd02e07a297ca7e97672a62f3b140833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Benchmarks</topic><topic>Convergence</topic><topic>Coulomb friction</topic><topic>Cylinders</topic><topic>Ground state</topic><topic>Halls</topic><topic>Quantum Hall effect</topic><topic>Solid state physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Zi-Xiang</creatorcontrib><creatorcontrib>Papić, Z.</creatorcontrib><creatorcontrib>Johri, S.</creatorcontrib><creatorcontrib>Bhatt, R.N.</creatorcontrib><creatorcontrib>Schmitteckert, Peter</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics letters. A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Zi-Xiang</au><au>Papić, Z.</au><au>Johri, S.</au><au>Bhatt, R.N.</au><au>Schmitteckert, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of the density-matrix renormalization group method applied to fractional quantum Hall systems in different geometries</atitle><jtitle>Physics letters. A</jtitle><date>2012-06-18</date><risdate>2012</risdate><volume>376</volume><issue>30-31</issue><spage>2157</spage><epage>2161</epage><pages>2157-2161</pages><issn>0375-9601</issn><eissn>1873-2429</eissn><abstract>We report a systematic study of the fractional quantum Hall effect (FQHE) using the density-matrix renormalization group (DMRG) method on two different geometries: the sphere and the cylinder. We provide convergence benchmarks based on model Hamiltonians known to possess exact zero-energy ground states, as well as an analysis of the number of sweeps and basis elements that need to be kept in order to achieve the desired accuracy. The ground state energies of the Coulomb Hamiltonian at ν=1/3 and ν=5/2 filling are extracted and compared with the results obtained by previous DMRG implementations in the literature. A remarkably rapid convergence in the cylinder geometry is noted and suggests that this boundary condition is particularly suited for the application of the DMRG method to the FQHE. ► FQHE is a two-dimensional physics. ► Density-matrix renormalization group method applied to FQH systems. ► Benchmark study both on sphere and cylinder geometry.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.physleta.2012.05.031</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0375-9601
ispartof Physics letters. A, 2012-06, Vol.376 (30-31), p.2157-2161
issn 0375-9601
1873-2429
language eng
recordid cdi_proquest_miscellaneous_1671325340
source ScienceDirect Journals
subjects Benchmarks
Convergence
Coulomb friction
Cylinders
Ground state
Halls
Quantum Hall effect
Solid state physics
title Comparison of the density-matrix renormalization group method applied to fractional quantum Hall systems in different geometries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A24%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20the%20density-matrix%20renormalization%20group%20method%20applied%20to%20fractional%20quantum%20Hall%20systems%20in%20different%20geometries&rft.jtitle=Physics%20letters.%20A&rft.au=Hu,%20Zi-Xiang&rft.date=2012-06-18&rft.volume=376&rft.issue=30-31&rft.spage=2157&rft.epage=2161&rft.pages=2157-2161&rft.issn=0375-9601&rft.eissn=1873-2429&rft_id=info:doi/10.1016/j.physleta.2012.05.031&rft_dat=%3Cproquest_cross%3E1671325340%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c378t-768e382a0a58287db8842b77ca0dd44f2dd02e07a297ca7e97672a62f3b140833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1038245247&rft_id=info:pmid/&rfr_iscdi=true