Loading…
Comparison of the density-matrix renormalization group method applied to fractional quantum Hall systems in different geometries
We report a systematic study of the fractional quantum Hall effect (FQHE) using the density-matrix renormalization group (DMRG) method on two different geometries: the sphere and the cylinder. We provide convergence benchmarks based on model Hamiltonians known to possess exact zero-energy ground sta...
Saved in:
Published in: | Physics letters. A 2012-06, Vol.376 (30-31), p.2157-2161 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c378t-768e382a0a58287db8842b77ca0dd44f2dd02e07a297ca7e97672a62f3b140833 |
---|---|
cites | cdi_FETCH-LOGICAL-c378t-768e382a0a58287db8842b77ca0dd44f2dd02e07a297ca7e97672a62f3b140833 |
container_end_page | 2161 |
container_issue | 30-31 |
container_start_page | 2157 |
container_title | Physics letters. A |
container_volume | 376 |
creator | Hu, Zi-Xiang Papić, Z. Johri, S. Bhatt, R.N. Schmitteckert, Peter |
description | We report a systematic study of the fractional quantum Hall effect (FQHE) using the density-matrix renormalization group (DMRG) method on two different geometries: the sphere and the cylinder. We provide convergence benchmarks based on model Hamiltonians known to possess exact zero-energy ground states, as well as an analysis of the number of sweeps and basis elements that need to be kept in order to achieve the desired accuracy. The ground state energies of the Coulomb Hamiltonian at ν=1/3 and ν=5/2 filling are extracted and compared with the results obtained by previous DMRG implementations in the literature. A remarkably rapid convergence in the cylinder geometry is noted and suggests that this boundary condition is particularly suited for the application of the DMRG method to the FQHE.
► FQHE is a two-dimensional physics. ► Density-matrix renormalization group method applied to FQH systems. ► Benchmark study both on sphere and cylinder geometry. |
doi_str_mv | 10.1016/j.physleta.2012.05.031 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671325340</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0375960112006111</els_id><sourcerecordid>1671325340</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-768e382a0a58287db8842b77ca0dd44f2dd02e07a297ca7e97672a62f3b140833</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhi0EEkvhFZCPXBLGdhI7N9AKKFKlXuBszcaTrldJnNoOYjnx6Hi19NzTSKPv_zSjn7H3AmoBovt4qtfjOU2UsZYgZA1tDUq8YDthtKpkI_uXbAdKt1XfgXjN3qR0AihJ6Hfs7z7MK0afwsLDyPORuKMl-XyuZszR_-aRlhBnnPwfzL5QDzFsK58pH4PjuK6TJ8dz4GPE4QLgxB83XPI281ucJp7OKdOcuF-48-NIxZf5A4ViiJ7SW_ZqxCnRu__zhv38-uXH_ra6u__2ff_5rhqUNrnSnSFlJAK2RhrtDsY08qD1gOBc04zSOZAEGmVfdpp63WmJnRzVQTRglLphH67eNYbHjVK2s08DTRMuFLZkRaeFkq1q4HkUyiVNKxtd0O6KDjGkFGm0a_QzxnOB7KUde7JP7dhLOxZaW9opwU_XIJWff3mKNg2eloGcjzRk64J_TvEPWcme7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1038245247</pqid></control><display><type>article</type><title>Comparison of the density-matrix renormalization group method applied to fractional quantum Hall systems in different geometries</title><source>ScienceDirect Journals</source><creator>Hu, Zi-Xiang ; Papić, Z. ; Johri, S. ; Bhatt, R.N. ; Schmitteckert, Peter</creator><creatorcontrib>Hu, Zi-Xiang ; Papić, Z. ; Johri, S. ; Bhatt, R.N. ; Schmitteckert, Peter</creatorcontrib><description>We report a systematic study of the fractional quantum Hall effect (FQHE) using the density-matrix renormalization group (DMRG) method on two different geometries: the sphere and the cylinder. We provide convergence benchmarks based on model Hamiltonians known to possess exact zero-energy ground states, as well as an analysis of the number of sweeps and basis elements that need to be kept in order to achieve the desired accuracy. The ground state energies of the Coulomb Hamiltonian at ν=1/3 and ν=5/2 filling are extracted and compared with the results obtained by previous DMRG implementations in the literature. A remarkably rapid convergence in the cylinder geometry is noted and suggests that this boundary condition is particularly suited for the application of the DMRG method to the FQHE.
► FQHE is a two-dimensional physics. ► Density-matrix renormalization group method applied to FQH systems. ► Benchmark study both on sphere and cylinder geometry.</description><identifier>ISSN: 0375-9601</identifier><identifier>EISSN: 1873-2429</identifier><identifier>DOI: 10.1016/j.physleta.2012.05.031</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Benchmarks ; Convergence ; Coulomb friction ; Cylinders ; Ground state ; Halls ; Quantum Hall effect ; Solid state physics</subject><ispartof>Physics letters. A, 2012-06, Vol.376 (30-31), p.2157-2161</ispartof><rights>2012 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-768e382a0a58287db8842b77ca0dd44f2dd02e07a297ca7e97672a62f3b140833</citedby><cites>FETCH-LOGICAL-c378t-768e382a0a58287db8842b77ca0dd44f2dd02e07a297ca7e97672a62f3b140833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hu, Zi-Xiang</creatorcontrib><creatorcontrib>Papić, Z.</creatorcontrib><creatorcontrib>Johri, S.</creatorcontrib><creatorcontrib>Bhatt, R.N.</creatorcontrib><creatorcontrib>Schmitteckert, Peter</creatorcontrib><title>Comparison of the density-matrix renormalization group method applied to fractional quantum Hall systems in different geometries</title><title>Physics letters. A</title><description>We report a systematic study of the fractional quantum Hall effect (FQHE) using the density-matrix renormalization group (DMRG) method on two different geometries: the sphere and the cylinder. We provide convergence benchmarks based on model Hamiltonians known to possess exact zero-energy ground states, as well as an analysis of the number of sweeps and basis elements that need to be kept in order to achieve the desired accuracy. The ground state energies of the Coulomb Hamiltonian at ν=1/3 and ν=5/2 filling are extracted and compared with the results obtained by previous DMRG implementations in the literature. A remarkably rapid convergence in the cylinder geometry is noted and suggests that this boundary condition is particularly suited for the application of the DMRG method to the FQHE.
► FQHE is a two-dimensional physics. ► Density-matrix renormalization group method applied to FQH systems. ► Benchmark study both on sphere and cylinder geometry.</description><subject>Benchmarks</subject><subject>Convergence</subject><subject>Coulomb friction</subject><subject>Cylinders</subject><subject>Ground state</subject><subject>Halls</subject><subject>Quantum Hall effect</subject><subject>Solid state physics</subject><issn>0375-9601</issn><issn>1873-2429</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkcFu1DAQhi0EEkvhFZCPXBLGdhI7N9AKKFKlXuBszcaTrldJnNoOYjnx6Hi19NzTSKPv_zSjn7H3AmoBovt4qtfjOU2UsZYgZA1tDUq8YDthtKpkI_uXbAdKt1XfgXjN3qR0AihJ6Hfs7z7MK0afwsLDyPORuKMl-XyuZszR_-aRlhBnnPwfzL5QDzFsK58pH4PjuK6TJ8dz4GPE4QLgxB83XPI281ucJp7OKdOcuF-48-NIxZf5A4ViiJ7SW_ZqxCnRu__zhv38-uXH_ra6u__2ff_5rhqUNrnSnSFlJAK2RhrtDsY08qD1gOBc04zSOZAEGmVfdpp63WmJnRzVQTRglLphH67eNYbHjVK2s08DTRMuFLZkRaeFkq1q4HkUyiVNKxtd0O6KDjGkFGm0a_QzxnOB7KUde7JP7dhLOxZaW9opwU_XIJWff3mKNg2eloGcjzRk64J_TvEPWcme7Q</recordid><startdate>20120618</startdate><enddate>20120618</enddate><creator>Hu, Zi-Xiang</creator><creator>Papić, Z.</creator><creator>Johri, S.</creator><creator>Bhatt, R.N.</creator><creator>Schmitteckert, Peter</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20120618</creationdate><title>Comparison of the density-matrix renormalization group method applied to fractional quantum Hall systems in different geometries</title><author>Hu, Zi-Xiang ; Papić, Z. ; Johri, S. ; Bhatt, R.N. ; Schmitteckert, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-768e382a0a58287db8842b77ca0dd44f2dd02e07a297ca7e97672a62f3b140833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Benchmarks</topic><topic>Convergence</topic><topic>Coulomb friction</topic><topic>Cylinders</topic><topic>Ground state</topic><topic>Halls</topic><topic>Quantum Hall effect</topic><topic>Solid state physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Zi-Xiang</creatorcontrib><creatorcontrib>Papić, Z.</creatorcontrib><creatorcontrib>Johri, S.</creatorcontrib><creatorcontrib>Bhatt, R.N.</creatorcontrib><creatorcontrib>Schmitteckert, Peter</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics letters. A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Zi-Xiang</au><au>Papić, Z.</au><au>Johri, S.</au><au>Bhatt, R.N.</au><au>Schmitteckert, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of the density-matrix renormalization group method applied to fractional quantum Hall systems in different geometries</atitle><jtitle>Physics letters. A</jtitle><date>2012-06-18</date><risdate>2012</risdate><volume>376</volume><issue>30-31</issue><spage>2157</spage><epage>2161</epage><pages>2157-2161</pages><issn>0375-9601</issn><eissn>1873-2429</eissn><abstract>We report a systematic study of the fractional quantum Hall effect (FQHE) using the density-matrix renormalization group (DMRG) method on two different geometries: the sphere and the cylinder. We provide convergence benchmarks based on model Hamiltonians known to possess exact zero-energy ground states, as well as an analysis of the number of sweeps and basis elements that need to be kept in order to achieve the desired accuracy. The ground state energies of the Coulomb Hamiltonian at ν=1/3 and ν=5/2 filling are extracted and compared with the results obtained by previous DMRG implementations in the literature. A remarkably rapid convergence in the cylinder geometry is noted and suggests that this boundary condition is particularly suited for the application of the DMRG method to the FQHE.
► FQHE is a two-dimensional physics. ► Density-matrix renormalization group method applied to FQH systems. ► Benchmark study both on sphere and cylinder geometry.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.physleta.2012.05.031</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0375-9601 |
ispartof | Physics letters. A, 2012-06, Vol.376 (30-31), p.2157-2161 |
issn | 0375-9601 1873-2429 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671325340 |
source | ScienceDirect Journals |
subjects | Benchmarks Convergence Coulomb friction Cylinders Ground state Halls Quantum Hall effect Solid state physics |
title | Comparison of the density-matrix renormalization group method applied to fractional quantum Hall systems in different geometries |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A24%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20the%20density-matrix%20renormalization%20group%20method%20applied%20to%20fractional%20quantum%20Hall%20systems%20in%20different%20geometries&rft.jtitle=Physics%20letters.%20A&rft.au=Hu,%20Zi-Xiang&rft.date=2012-06-18&rft.volume=376&rft.issue=30-31&rft.spage=2157&rft.epage=2161&rft.pages=2157-2161&rft.issn=0375-9601&rft.eissn=1873-2429&rft_id=info:doi/10.1016/j.physleta.2012.05.031&rft_dat=%3Cproquest_cross%3E1671325340%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c378t-768e382a0a58287db8842b77ca0dd44f2dd02e07a297ca7e97672a62f3b140833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1038245247&rft_id=info:pmid/&rfr_iscdi=true |