Loading…
Thermal sprayed stainless steel/carbon nanotube composite coatings
Stainless steel/carbon nanotube (SS/CNT) composite coating was prepared by thermal spray from the feedstock powder synthesized by chemical vapor deposition at a synthesis temperature and time of 800°C and 120min under ethanol atmosphere. Microstructural investigation by TEM and SEM revealed that gro...
Saved in:
Published in: | Surface & coatings technology 2010-12, Vol.205 (7), p.2104-2112 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c375t-4f5e2cec4284e20f2984f233038d5222615bc98c502e913e8e76adad89c8a05d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c375t-4f5e2cec4284e20f2984f233038d5222615bc98c502e913e8e76adad89c8a05d3 |
container_end_page | 2112 |
container_issue | 7 |
container_start_page | 2104 |
container_title | Surface & coatings technology |
container_volume | 205 |
creator | Kaewsai, D. Watcharapasorn, A. Singjai, P. Wirojanupatump, S. Niranatlumpong, P. Jiansirisomboon, S. |
description | Stainless steel/carbon nanotube (SS/CNT) composite coating was prepared by thermal spray from the feedstock powder synthesized by chemical vapor deposition at a synthesis temperature and time of 800°C and 120min under ethanol atmosphere. Microstructural investigation by TEM and SEM revealed that grown CNTs covering the surface of stainless steel particles were multi-walled type with an average diameter of about 44nm. Microstructures of pure stainless steel and SS/CNT composite coatings similarly showed splat characteristic and lamellar structure. Incorporation of CNTs was clearly observed in the composite coating. Hardness of SS/CNT composite coating (480±36 HV0.3) was higher than that of pure stainless steel coating (303±33 HV0.3). Coefficient of friction of the SS/CNT coating was almost 3 times lower than that of stainless steel coating which resulted in reduction of sliding wear rate of nearly 2 times. This research thus demonstrated a new composite coating with better wear resistive performance compared to a coating deposited by commercially available stainless steel powder. |
doi_str_mv | 10.1016/j.surfcoat.2010.08.113 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671326089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S025789721000770X</els_id><sourcerecordid>1671326089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-4f5e2cec4284e20f2984f233038d5222615bc98c502e913e8e76adad89c8a05d3</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhC0EEqXwF1AuSFyS-pHE9g2oeEmVuJSz5TobcJXEwZsg9d-TqoUrpx2tvtnRDiHXjGaMsnKxzXCMtQt2yDidllRljIkTMmNK6lSIXJ6SGeWFTJWW_JxcIG4ppUzqfEYe1p8QW9sk2Ee7gyrBwfquAcRJATQLZ-MmdElnuzCMG0hcaPuAftgrO_juAy_JWW0bhKvjnJP3p8f18iVdvT2_Lu9XqROyGNK8LoA7cDlXOXBac63ymgtBhaoKznnJio3TyhWUg2YCFMjSVrZS2ilLi0rMye3hbh_D1wg4mNajg6axHYQRDSslE7ykSk9oeUBdDIgRatNH39q4M4yafWlma35LM_vSDFVmKm0y3hwzLDrb1NF2zuOfmws9wUJO3N2Bg-nhbw_RoPPQOah8BDeYKvj_on4AGXKGaw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671326089</pqid></control><display><type>article</type><title>Thermal sprayed stainless steel/carbon nanotube composite coatings</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Kaewsai, D. ; Watcharapasorn, A. ; Singjai, P. ; Wirojanupatump, S. ; Niranatlumpong, P. ; Jiansirisomboon, S.</creator><creatorcontrib>Kaewsai, D. ; Watcharapasorn, A. ; Singjai, P. ; Wirojanupatump, S. ; Niranatlumpong, P. ; Jiansirisomboon, S.</creatorcontrib><description>Stainless steel/carbon nanotube (SS/CNT) composite coating was prepared by thermal spray from the feedstock powder synthesized by chemical vapor deposition at a synthesis temperature and time of 800°C and 120min under ethanol atmosphere. Microstructural investigation by TEM and SEM revealed that grown CNTs covering the surface of stainless steel particles were multi-walled type with an average diameter of about 44nm. Microstructures of pure stainless steel and SS/CNT composite coatings similarly showed splat characteristic and lamellar structure. Incorporation of CNTs was clearly observed in the composite coating. Hardness of SS/CNT composite coating (480±36 HV0.3) was higher than that of pure stainless steel coating (303±33 HV0.3). Coefficient of friction of the SS/CNT coating was almost 3 times lower than that of stainless steel coating which resulted in reduction of sliding wear rate of nearly 2 times. This research thus demonstrated a new composite coating with better wear resistive performance compared to a coating deposited by commercially available stainless steel powder.</description><identifier>ISSN: 0257-8972</identifier><identifier>EISSN: 1879-3347</identifier><identifier>DOI: 10.1016/j.surfcoat.2010.08.113</identifier><identifier>CODEN: SCTEEJ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Carbon nanotubes ; Chemical vapor deposition ; CNT thermal spray ; Coating ; Coatings ; Composite coatings ; Cross-disciplinary physics: materials science; rheology ; Ethyl alcohol ; Exact sciences and technology ; Materials science ; Metals. Metallurgy ; Microstructure ; Nanocomposite ; Physics ; Production techniques ; Reduction ; Stainless steel ; Stainless steels ; Surface treatment ; Surface treatments ; Temperature</subject><ispartof>Surface & coatings technology, 2010-12, Vol.205 (7), p.2104-2112</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-4f5e2cec4284e20f2984f233038d5222615bc98c502e913e8e76adad89c8a05d3</citedby><cites>FETCH-LOGICAL-c375t-4f5e2cec4284e20f2984f233038d5222615bc98c502e913e8e76adad89c8a05d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23901037$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kaewsai, D.</creatorcontrib><creatorcontrib>Watcharapasorn, A.</creatorcontrib><creatorcontrib>Singjai, P.</creatorcontrib><creatorcontrib>Wirojanupatump, S.</creatorcontrib><creatorcontrib>Niranatlumpong, P.</creatorcontrib><creatorcontrib>Jiansirisomboon, S.</creatorcontrib><title>Thermal sprayed stainless steel/carbon nanotube composite coatings</title><title>Surface & coatings technology</title><description>Stainless steel/carbon nanotube (SS/CNT) composite coating was prepared by thermal spray from the feedstock powder synthesized by chemical vapor deposition at a synthesis temperature and time of 800°C and 120min under ethanol atmosphere. Microstructural investigation by TEM and SEM revealed that grown CNTs covering the surface of stainless steel particles were multi-walled type with an average diameter of about 44nm. Microstructures of pure stainless steel and SS/CNT composite coatings similarly showed splat characteristic and lamellar structure. Incorporation of CNTs was clearly observed in the composite coating. Hardness of SS/CNT composite coating (480±36 HV0.3) was higher than that of pure stainless steel coating (303±33 HV0.3). Coefficient of friction of the SS/CNT coating was almost 3 times lower than that of stainless steel coating which resulted in reduction of sliding wear rate of nearly 2 times. This research thus demonstrated a new composite coating with better wear resistive performance compared to a coating deposited by commercially available stainless steel powder.</description><subject>Applied sciences</subject><subject>Carbon nanotubes</subject><subject>Chemical vapor deposition</subject><subject>CNT thermal spray</subject><subject>Coating</subject><subject>Coatings</subject><subject>Composite coatings</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Ethyl alcohol</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Metals. Metallurgy</subject><subject>Microstructure</subject><subject>Nanocomposite</subject><subject>Physics</subject><subject>Production techniques</subject><subject>Reduction</subject><subject>Stainless steel</subject><subject>Stainless steels</subject><subject>Surface treatment</subject><subject>Surface treatments</subject><subject>Temperature</subject><issn>0257-8972</issn><issn>1879-3347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwzAQhC0EEqXwF1AuSFyS-pHE9g2oeEmVuJSz5TobcJXEwZsg9d-TqoUrpx2tvtnRDiHXjGaMsnKxzXCMtQt2yDidllRljIkTMmNK6lSIXJ6SGeWFTJWW_JxcIG4ppUzqfEYe1p8QW9sk2Ee7gyrBwfquAcRJATQLZ-MmdElnuzCMG0hcaPuAftgrO_juAy_JWW0bhKvjnJP3p8f18iVdvT2_Lu9XqROyGNK8LoA7cDlXOXBac63ymgtBhaoKznnJio3TyhWUg2YCFMjSVrZS2ilLi0rMye3hbh_D1wg4mNajg6axHYQRDSslE7ykSk9oeUBdDIgRatNH39q4M4yafWlma35LM_vSDFVmKm0y3hwzLDrb1NF2zuOfmws9wUJO3N2Bg-nhbw_RoPPQOah8BDeYKvj_on4AGXKGaw</recordid><startdate>20101225</startdate><enddate>20101225</enddate><creator>Kaewsai, D.</creator><creator>Watcharapasorn, A.</creator><creator>Singjai, P.</creator><creator>Wirojanupatump, S.</creator><creator>Niranatlumpong, P.</creator><creator>Jiansirisomboon, S.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20101225</creationdate><title>Thermal sprayed stainless steel/carbon nanotube composite coatings</title><author>Kaewsai, D. ; Watcharapasorn, A. ; Singjai, P. ; Wirojanupatump, S. ; Niranatlumpong, P. ; Jiansirisomboon, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-4f5e2cec4284e20f2984f233038d5222615bc98c502e913e8e76adad89c8a05d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Carbon nanotubes</topic><topic>Chemical vapor deposition</topic><topic>CNT thermal spray</topic><topic>Coating</topic><topic>Coatings</topic><topic>Composite coatings</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Ethyl alcohol</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Metals. Metallurgy</topic><topic>Microstructure</topic><topic>Nanocomposite</topic><topic>Physics</topic><topic>Production techniques</topic><topic>Reduction</topic><topic>Stainless steel</topic><topic>Stainless steels</topic><topic>Surface treatment</topic><topic>Surface treatments</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaewsai, D.</creatorcontrib><creatorcontrib>Watcharapasorn, A.</creatorcontrib><creatorcontrib>Singjai, P.</creatorcontrib><creatorcontrib>Wirojanupatump, S.</creatorcontrib><creatorcontrib>Niranatlumpong, P.</creatorcontrib><creatorcontrib>Jiansirisomboon, S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Surface & coatings technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaewsai, D.</au><au>Watcharapasorn, A.</au><au>Singjai, P.</au><au>Wirojanupatump, S.</au><au>Niranatlumpong, P.</au><au>Jiansirisomboon, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal sprayed stainless steel/carbon nanotube composite coatings</atitle><jtitle>Surface & coatings technology</jtitle><date>2010-12-25</date><risdate>2010</risdate><volume>205</volume><issue>7</issue><spage>2104</spage><epage>2112</epage><pages>2104-2112</pages><issn>0257-8972</issn><eissn>1879-3347</eissn><coden>SCTEEJ</coden><abstract>Stainless steel/carbon nanotube (SS/CNT) composite coating was prepared by thermal spray from the feedstock powder synthesized by chemical vapor deposition at a synthesis temperature and time of 800°C and 120min under ethanol atmosphere. Microstructural investigation by TEM and SEM revealed that grown CNTs covering the surface of stainless steel particles were multi-walled type with an average diameter of about 44nm. Microstructures of pure stainless steel and SS/CNT composite coatings similarly showed splat characteristic and lamellar structure. Incorporation of CNTs was clearly observed in the composite coating. Hardness of SS/CNT composite coating (480±36 HV0.3) was higher than that of pure stainless steel coating (303±33 HV0.3). Coefficient of friction of the SS/CNT coating was almost 3 times lower than that of stainless steel coating which resulted in reduction of sliding wear rate of nearly 2 times. This research thus demonstrated a new composite coating with better wear resistive performance compared to a coating deposited by commercially available stainless steel powder.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.surfcoat.2010.08.113</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0257-8972 |
ispartof | Surface & coatings technology, 2010-12, Vol.205 (7), p.2104-2112 |
issn | 0257-8972 1879-3347 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671326089 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Applied sciences Carbon nanotubes Chemical vapor deposition CNT thermal spray Coating Coatings Composite coatings Cross-disciplinary physics: materials science rheology Ethyl alcohol Exact sciences and technology Materials science Metals. Metallurgy Microstructure Nanocomposite Physics Production techniques Reduction Stainless steel Stainless steels Surface treatment Surface treatments Temperature |
title | Thermal sprayed stainless steel/carbon nanotube composite coatings |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A48%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20sprayed%20stainless%20steel/carbon%20nanotube%20composite%20coatings&rft.jtitle=Surface%20&%20coatings%20technology&rft.au=Kaewsai,%20D.&rft.date=2010-12-25&rft.volume=205&rft.issue=7&rft.spage=2104&rft.epage=2112&rft.pages=2104-2112&rft.issn=0257-8972&rft.eissn=1879-3347&rft.coden=SCTEEJ&rft_id=info:doi/10.1016/j.surfcoat.2010.08.113&rft_dat=%3Cproquest_cross%3E1671326089%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c375t-4f5e2cec4284e20f2984f233038d5222615bc98c502e913e8e76adad89c8a05d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671326089&rft_id=info:pmid/&rfr_iscdi=true |