Loading…

Thermal sprayed stainless steel/carbon nanotube composite coatings

Stainless steel/carbon nanotube (SS/CNT) composite coating was prepared by thermal spray from the feedstock powder synthesized by chemical vapor deposition at a synthesis temperature and time of 800°C and 120min under ethanol atmosphere. Microstructural investigation by TEM and SEM revealed that gro...

Full description

Saved in:
Bibliographic Details
Published in:Surface & coatings technology 2010-12, Vol.205 (7), p.2104-2112
Main Authors: Kaewsai, D., Watcharapasorn, A., Singjai, P., Wirojanupatump, S., Niranatlumpong, P., Jiansirisomboon, S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c375t-4f5e2cec4284e20f2984f233038d5222615bc98c502e913e8e76adad89c8a05d3
cites cdi_FETCH-LOGICAL-c375t-4f5e2cec4284e20f2984f233038d5222615bc98c502e913e8e76adad89c8a05d3
container_end_page 2112
container_issue 7
container_start_page 2104
container_title Surface & coatings technology
container_volume 205
creator Kaewsai, D.
Watcharapasorn, A.
Singjai, P.
Wirojanupatump, S.
Niranatlumpong, P.
Jiansirisomboon, S.
description Stainless steel/carbon nanotube (SS/CNT) composite coating was prepared by thermal spray from the feedstock powder synthesized by chemical vapor deposition at a synthesis temperature and time of 800°C and 120min under ethanol atmosphere. Microstructural investigation by TEM and SEM revealed that grown CNTs covering the surface of stainless steel particles were multi-walled type with an average diameter of about 44nm. Microstructures of pure stainless steel and SS/CNT composite coatings similarly showed splat characteristic and lamellar structure. Incorporation of CNTs was clearly observed in the composite coating. Hardness of SS/CNT composite coating (480±36 HV0.3) was higher than that of pure stainless steel coating (303±33 HV0.3). Coefficient of friction of the SS/CNT coating was almost 3 times lower than that of stainless steel coating which resulted in reduction of sliding wear rate of nearly 2 times. This research thus demonstrated a new composite coating with better wear resistive performance compared to a coating deposited by commercially available stainless steel powder.
doi_str_mv 10.1016/j.surfcoat.2010.08.113
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671326089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S025789721000770X</els_id><sourcerecordid>1671326089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-4f5e2cec4284e20f2984f233038d5222615bc98c502e913e8e76adad89c8a05d3</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhC0EEqXwF1AuSFyS-pHE9g2oeEmVuJSz5TobcJXEwZsg9d-TqoUrpx2tvtnRDiHXjGaMsnKxzXCMtQt2yDidllRljIkTMmNK6lSIXJ6SGeWFTJWW_JxcIG4ppUzqfEYe1p8QW9sk2Ee7gyrBwfquAcRJATQLZ-MmdElnuzCMG0hcaPuAftgrO_juAy_JWW0bhKvjnJP3p8f18iVdvT2_Lu9XqROyGNK8LoA7cDlXOXBac63ymgtBhaoKznnJio3TyhWUg2YCFMjSVrZS2ilLi0rMye3hbh_D1wg4mNajg6axHYQRDSslE7ykSk9oeUBdDIgRatNH39q4M4yafWlma35LM_vSDFVmKm0y3hwzLDrb1NF2zuOfmws9wUJO3N2Bg-nhbw_RoPPQOah8BDeYKvj_on4AGXKGaw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671326089</pqid></control><display><type>article</type><title>Thermal sprayed stainless steel/carbon nanotube composite coatings</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Kaewsai, D. ; Watcharapasorn, A. ; Singjai, P. ; Wirojanupatump, S. ; Niranatlumpong, P. ; Jiansirisomboon, S.</creator><creatorcontrib>Kaewsai, D. ; Watcharapasorn, A. ; Singjai, P. ; Wirojanupatump, S. ; Niranatlumpong, P. ; Jiansirisomboon, S.</creatorcontrib><description>Stainless steel/carbon nanotube (SS/CNT) composite coating was prepared by thermal spray from the feedstock powder synthesized by chemical vapor deposition at a synthesis temperature and time of 800°C and 120min under ethanol atmosphere. Microstructural investigation by TEM and SEM revealed that grown CNTs covering the surface of stainless steel particles were multi-walled type with an average diameter of about 44nm. Microstructures of pure stainless steel and SS/CNT composite coatings similarly showed splat characteristic and lamellar structure. Incorporation of CNTs was clearly observed in the composite coating. Hardness of SS/CNT composite coating (480±36 HV0.3) was higher than that of pure stainless steel coating (303±33 HV0.3). Coefficient of friction of the SS/CNT coating was almost 3 times lower than that of stainless steel coating which resulted in reduction of sliding wear rate of nearly 2 times. This research thus demonstrated a new composite coating with better wear resistive performance compared to a coating deposited by commercially available stainless steel powder.</description><identifier>ISSN: 0257-8972</identifier><identifier>EISSN: 1879-3347</identifier><identifier>DOI: 10.1016/j.surfcoat.2010.08.113</identifier><identifier>CODEN: SCTEEJ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Carbon nanotubes ; Chemical vapor deposition ; CNT thermal spray ; Coating ; Coatings ; Composite coatings ; Cross-disciplinary physics: materials science; rheology ; Ethyl alcohol ; Exact sciences and technology ; Materials science ; Metals. Metallurgy ; Microstructure ; Nanocomposite ; Physics ; Production techniques ; Reduction ; Stainless steel ; Stainless steels ; Surface treatment ; Surface treatments ; Temperature</subject><ispartof>Surface &amp; coatings technology, 2010-12, Vol.205 (7), p.2104-2112</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-4f5e2cec4284e20f2984f233038d5222615bc98c502e913e8e76adad89c8a05d3</citedby><cites>FETCH-LOGICAL-c375t-4f5e2cec4284e20f2984f233038d5222615bc98c502e913e8e76adad89c8a05d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23901037$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kaewsai, D.</creatorcontrib><creatorcontrib>Watcharapasorn, A.</creatorcontrib><creatorcontrib>Singjai, P.</creatorcontrib><creatorcontrib>Wirojanupatump, S.</creatorcontrib><creatorcontrib>Niranatlumpong, P.</creatorcontrib><creatorcontrib>Jiansirisomboon, S.</creatorcontrib><title>Thermal sprayed stainless steel/carbon nanotube composite coatings</title><title>Surface &amp; coatings technology</title><description>Stainless steel/carbon nanotube (SS/CNT) composite coating was prepared by thermal spray from the feedstock powder synthesized by chemical vapor deposition at a synthesis temperature and time of 800°C and 120min under ethanol atmosphere. Microstructural investigation by TEM and SEM revealed that grown CNTs covering the surface of stainless steel particles were multi-walled type with an average diameter of about 44nm. Microstructures of pure stainless steel and SS/CNT composite coatings similarly showed splat characteristic and lamellar structure. Incorporation of CNTs was clearly observed in the composite coating. Hardness of SS/CNT composite coating (480±36 HV0.3) was higher than that of pure stainless steel coating (303±33 HV0.3). Coefficient of friction of the SS/CNT coating was almost 3 times lower than that of stainless steel coating which resulted in reduction of sliding wear rate of nearly 2 times. This research thus demonstrated a new composite coating with better wear resistive performance compared to a coating deposited by commercially available stainless steel powder.</description><subject>Applied sciences</subject><subject>Carbon nanotubes</subject><subject>Chemical vapor deposition</subject><subject>CNT thermal spray</subject><subject>Coating</subject><subject>Coatings</subject><subject>Composite coatings</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Ethyl alcohol</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Metals. Metallurgy</subject><subject>Microstructure</subject><subject>Nanocomposite</subject><subject>Physics</subject><subject>Production techniques</subject><subject>Reduction</subject><subject>Stainless steel</subject><subject>Stainless steels</subject><subject>Surface treatment</subject><subject>Surface treatments</subject><subject>Temperature</subject><issn>0257-8972</issn><issn>1879-3347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwzAQhC0EEqXwF1AuSFyS-pHE9g2oeEmVuJSz5TobcJXEwZsg9d-TqoUrpx2tvtnRDiHXjGaMsnKxzXCMtQt2yDidllRljIkTMmNK6lSIXJ6SGeWFTJWW_JxcIG4ppUzqfEYe1p8QW9sk2Ee7gyrBwfquAcRJATQLZ-MmdElnuzCMG0hcaPuAftgrO_juAy_JWW0bhKvjnJP3p8f18iVdvT2_Lu9XqROyGNK8LoA7cDlXOXBac63ymgtBhaoKznnJio3TyhWUg2YCFMjSVrZS2ilLi0rMye3hbh_D1wg4mNajg6axHYQRDSslE7ykSk9oeUBdDIgRatNH39q4M4yafWlma35LM_vSDFVmKm0y3hwzLDrb1NF2zuOfmws9wUJO3N2Bg-nhbw_RoPPQOah8BDeYKvj_on4AGXKGaw</recordid><startdate>20101225</startdate><enddate>20101225</enddate><creator>Kaewsai, D.</creator><creator>Watcharapasorn, A.</creator><creator>Singjai, P.</creator><creator>Wirojanupatump, S.</creator><creator>Niranatlumpong, P.</creator><creator>Jiansirisomboon, S.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20101225</creationdate><title>Thermal sprayed stainless steel/carbon nanotube composite coatings</title><author>Kaewsai, D. ; Watcharapasorn, A. ; Singjai, P. ; Wirojanupatump, S. ; Niranatlumpong, P. ; Jiansirisomboon, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-4f5e2cec4284e20f2984f233038d5222615bc98c502e913e8e76adad89c8a05d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Carbon nanotubes</topic><topic>Chemical vapor deposition</topic><topic>CNT thermal spray</topic><topic>Coating</topic><topic>Coatings</topic><topic>Composite coatings</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Ethyl alcohol</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Metals. Metallurgy</topic><topic>Microstructure</topic><topic>Nanocomposite</topic><topic>Physics</topic><topic>Production techniques</topic><topic>Reduction</topic><topic>Stainless steel</topic><topic>Stainless steels</topic><topic>Surface treatment</topic><topic>Surface treatments</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaewsai, D.</creatorcontrib><creatorcontrib>Watcharapasorn, A.</creatorcontrib><creatorcontrib>Singjai, P.</creatorcontrib><creatorcontrib>Wirojanupatump, S.</creatorcontrib><creatorcontrib>Niranatlumpong, P.</creatorcontrib><creatorcontrib>Jiansirisomboon, S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Surface &amp; coatings technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaewsai, D.</au><au>Watcharapasorn, A.</au><au>Singjai, P.</au><au>Wirojanupatump, S.</au><au>Niranatlumpong, P.</au><au>Jiansirisomboon, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal sprayed stainless steel/carbon nanotube composite coatings</atitle><jtitle>Surface &amp; coatings technology</jtitle><date>2010-12-25</date><risdate>2010</risdate><volume>205</volume><issue>7</issue><spage>2104</spage><epage>2112</epage><pages>2104-2112</pages><issn>0257-8972</issn><eissn>1879-3347</eissn><coden>SCTEEJ</coden><abstract>Stainless steel/carbon nanotube (SS/CNT) composite coating was prepared by thermal spray from the feedstock powder synthesized by chemical vapor deposition at a synthesis temperature and time of 800°C and 120min under ethanol atmosphere. Microstructural investigation by TEM and SEM revealed that grown CNTs covering the surface of stainless steel particles were multi-walled type with an average diameter of about 44nm. Microstructures of pure stainless steel and SS/CNT composite coatings similarly showed splat characteristic and lamellar structure. Incorporation of CNTs was clearly observed in the composite coating. Hardness of SS/CNT composite coating (480±36 HV0.3) was higher than that of pure stainless steel coating (303±33 HV0.3). Coefficient of friction of the SS/CNT coating was almost 3 times lower than that of stainless steel coating which resulted in reduction of sliding wear rate of nearly 2 times. This research thus demonstrated a new composite coating with better wear resistive performance compared to a coating deposited by commercially available stainless steel powder.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.surfcoat.2010.08.113</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0257-8972
ispartof Surface & coatings technology, 2010-12, Vol.205 (7), p.2104-2112
issn 0257-8972
1879-3347
language eng
recordid cdi_proquest_miscellaneous_1671326089
source ScienceDirect Freedom Collection 2022-2024
subjects Applied sciences
Carbon nanotubes
Chemical vapor deposition
CNT thermal spray
Coating
Coatings
Composite coatings
Cross-disciplinary physics: materials science
rheology
Ethyl alcohol
Exact sciences and technology
Materials science
Metals. Metallurgy
Microstructure
Nanocomposite
Physics
Production techniques
Reduction
Stainless steel
Stainless steels
Surface treatment
Surface treatments
Temperature
title Thermal sprayed stainless steel/carbon nanotube composite coatings
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A48%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20sprayed%20stainless%20steel/carbon%20nanotube%20composite%20coatings&rft.jtitle=Surface%20&%20coatings%20technology&rft.au=Kaewsai,%20D.&rft.date=2010-12-25&rft.volume=205&rft.issue=7&rft.spage=2104&rft.epage=2112&rft.pages=2104-2112&rft.issn=0257-8972&rft.eissn=1879-3347&rft.coden=SCTEEJ&rft_id=info:doi/10.1016/j.surfcoat.2010.08.113&rft_dat=%3Cproquest_cross%3E1671326089%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c375t-4f5e2cec4284e20f2984f233038d5222615bc98c502e913e8e76adad89c8a05d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671326089&rft_id=info:pmid/&rfr_iscdi=true