Loading…

Ab initio density functional theory investigation of Li-intercalated zinc oxide nanotube bundles

We have investigated the energetic, and geometric and electronic structure of Li-intercalated (5,5) zinc oxide nanotube (ZnONT) bundles via density functional theory as implemented in the code WIEN2k. Our results showed that the most prominent effect of Li intercalation on the electronic band struct...

Full description

Saved in:
Bibliographic Details
Published in:Solid state sciences 2010-12, Vol.12 (12), p.2042-2046
Main Authors: Fathalian, Ali, Valedbagi, Shahoo, Jalilian, Jaafar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c405t-8e8666d609537ff2f9437cb223bbcd2d330ca43364d01a064809f78c94204c3f3
cites cdi_FETCH-LOGICAL-c405t-8e8666d609537ff2f9437cb223bbcd2d330ca43364d01a064809f78c94204c3f3
container_end_page 2046
container_issue 12
container_start_page 2042
container_title Solid state sciences
container_volume 12
creator Fathalian, Ali
Valedbagi, Shahoo
Jalilian, Jaafar
description We have investigated the energetic, and geometric and electronic structure of Li-intercalated (5,5) zinc oxide nanotube (ZnONT) bundles via density functional theory as implemented in the code WIEN2k. Our results showed that the most prominent effect of Li intercalation on the electronic band structure is a shift of the Fermi energy which occurs as a result of charge transfer from lithium to the ZnONTs. All the Li-intercalated (5,5) ZnONT bundles are predicted to be metallic representing a substantial change in electronic properties relative to the undoped bundle, which is a wide band gap semiconductor. Both inside of the nanotube and the interstitial spaces are susceptible for intercalation. The present calculations suggest that the single-walled zinc oxide nanotube (SwZnONT) bundle is a promising candidate for the anode material in battery applications. [Display omitted]
doi_str_mv 10.1016/j.solidstatesciences.2010.08.024
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671327282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1293255810003638</els_id><sourcerecordid>1671327282</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-8e8666d609537ff2f9437cb223bbcd2d330ca43364d01a064809f78c94204c3f3</originalsourceid><addsrcrecordid>eNqNkE9PHCEYhydNm9RqvwOXJl5m-w4wDHPTGGs1m3jRMzLw0rIZQYExbj-9bHbjpRdP_Hvy-708TXPawaqDTvzcrHKcvc1FF8zGYzCYVxTqM8gVUP6pOerkwFoGsv9c93RkLe17-bX5lvMGAIQY-FHzcD4RH3zxkVgM2ZctcUsw9Rz0TMpfjGlbgRfMxf_Ru2sSHVn71oeCyei51lvyzwdD4qu3SIIOsSwTkmkJdsZ80nxxes74_bAeN_e_Lu8ufrfr26vri_N1azj0pZUohRBWwNizwTnqRs4GM1HKpslYahkDozljglvoNAguYXSDNCOnwA1z7Lg53ec-pfi81HHVo88G51kHjEtWnRg6RgcqaUXP9qhJMeeETj0l_6jTVnWgdnLVRv0vV-3kKpCqyq0RPw5tOlcJLulgfH7PoUywgTJWuZs9h_XrLx6TOsRZn9AUZaP_eOkb6UWdlg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671327282</pqid></control><display><type>article</type><title>Ab initio density functional theory investigation of Li-intercalated zinc oxide nanotube bundles</title><source>ScienceDirect Journals</source><creator>Fathalian, Ali ; Valedbagi, Shahoo ; Jalilian, Jaafar</creator><creatorcontrib>Fathalian, Ali ; Valedbagi, Shahoo ; Jalilian, Jaafar</creatorcontrib><description>We have investigated the energetic, and geometric and electronic structure of Li-intercalated (5,5) zinc oxide nanotube (ZnONT) bundles via density functional theory as implemented in the code WIEN2k. Our results showed that the most prominent effect of Li intercalation on the electronic band structure is a shift of the Fermi energy which occurs as a result of charge transfer from lithium to the ZnONTs. All the Li-intercalated (5,5) ZnONT bundles are predicted to be metallic representing a substantial change in electronic properties relative to the undoped bundle, which is a wide band gap semiconductor. Both inside of the nanotube and the interstitial spaces are susceptible for intercalation. The present calculations suggest that the single-walled zinc oxide nanotube (SwZnONT) bundle is a promising candidate for the anode material in battery applications. [Display omitted]</description><identifier>ISSN: 1293-2558</identifier><identifier>EISSN: 1873-3085</identifier><identifier>DOI: 10.1016/j.solidstatesciences.2010.08.024</identifier><language>eng</language><publisher>Issy-les-Moulineaux: Elsevier Masson SAS</publisher><subject>Bundles ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Density functional theory ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Electronic structure of nanoscale materials : clusters, nanoparticles, nanotubes, and nanocrystals ; Exact sciences and technology ; Fermi surfaces ; Intercalation ; Materials science ; Nanocomposites ; Nanomaterials ; Nanoscale materials and structures: fabrication and characterization ; Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals ; Nanostructure ; Nanotubes ; Physics ; Semiconductors ; Structure of solids and liquids; crystallography ; Zinc oxide ; Zinc oxide nanotube bundle</subject><ispartof>Solid state sciences, 2010-12, Vol.12 (12), p.2042-2046</ispartof><rights>2010</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-8e8666d609537ff2f9437cb223bbcd2d330ca43364d01a064809f78c94204c3f3</citedby><cites>FETCH-LOGICAL-c405t-8e8666d609537ff2f9437cb223bbcd2d330ca43364d01a064809f78c94204c3f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23637233$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Fathalian, Ali</creatorcontrib><creatorcontrib>Valedbagi, Shahoo</creatorcontrib><creatorcontrib>Jalilian, Jaafar</creatorcontrib><title>Ab initio density functional theory investigation of Li-intercalated zinc oxide nanotube bundles</title><title>Solid state sciences</title><description>We have investigated the energetic, and geometric and electronic structure of Li-intercalated (5,5) zinc oxide nanotube (ZnONT) bundles via density functional theory as implemented in the code WIEN2k. Our results showed that the most prominent effect of Li intercalation on the electronic band structure is a shift of the Fermi energy which occurs as a result of charge transfer from lithium to the ZnONTs. All the Li-intercalated (5,5) ZnONT bundles are predicted to be metallic representing a substantial change in electronic properties relative to the undoped bundle, which is a wide band gap semiconductor. Both inside of the nanotube and the interstitial spaces are susceptible for intercalation. The present calculations suggest that the single-walled zinc oxide nanotube (SwZnONT) bundle is a promising candidate for the anode material in battery applications. [Display omitted]</description><subject>Bundles</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Density functional theory</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Electronic structure of nanoscale materials : clusters, nanoparticles, nanotubes, and nanocrystals</subject><subject>Exact sciences and technology</subject><subject>Fermi surfaces</subject><subject>Intercalation</subject><subject>Materials science</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals</subject><subject>Nanostructure</subject><subject>Nanotubes</subject><subject>Physics</subject><subject>Semiconductors</subject><subject>Structure of solids and liquids; crystallography</subject><subject>Zinc oxide</subject><subject>Zinc oxide nanotube bundle</subject><issn>1293-2558</issn><issn>1873-3085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNkE9PHCEYhydNm9RqvwOXJl5m-w4wDHPTGGs1m3jRMzLw0rIZQYExbj-9bHbjpRdP_Hvy-708TXPawaqDTvzcrHKcvc1FF8zGYzCYVxTqM8gVUP6pOerkwFoGsv9c93RkLe17-bX5lvMGAIQY-FHzcD4RH3zxkVgM2ZctcUsw9Rz0TMpfjGlbgRfMxf_Ru2sSHVn71oeCyei51lvyzwdD4qu3SIIOsSwTkmkJdsZ80nxxes74_bAeN_e_Lu8ufrfr26vri_N1azj0pZUohRBWwNizwTnqRs4GM1HKpslYahkDozljglvoNAguYXSDNCOnwA1z7Lg53ec-pfi81HHVo88G51kHjEtWnRg6RgcqaUXP9qhJMeeETj0l_6jTVnWgdnLVRv0vV-3kKpCqyq0RPw5tOlcJLulgfH7PoUywgTJWuZs9h_XrLx6TOsRZn9AUZaP_eOkb6UWdlg</recordid><startdate>20101201</startdate><enddate>20101201</enddate><creator>Fathalian, Ali</creator><creator>Valedbagi, Shahoo</creator><creator>Jalilian, Jaafar</creator><general>Elsevier Masson SAS</general><general>Elsevier Masson</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20101201</creationdate><title>Ab initio density functional theory investigation of Li-intercalated zinc oxide nanotube bundles</title><author>Fathalian, Ali ; Valedbagi, Shahoo ; Jalilian, Jaafar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-8e8666d609537ff2f9437cb223bbcd2d330ca43364d01a064809f78c94204c3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Bundles</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Density functional theory</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Electronic structure of nanoscale materials : clusters, nanoparticles, nanotubes, and nanocrystals</topic><topic>Exact sciences and technology</topic><topic>Fermi surfaces</topic><topic>Intercalation</topic><topic>Materials science</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals</topic><topic>Nanostructure</topic><topic>Nanotubes</topic><topic>Physics</topic><topic>Semiconductors</topic><topic>Structure of solids and liquids; crystallography</topic><topic>Zinc oxide</topic><topic>Zinc oxide nanotube bundle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fathalian, Ali</creatorcontrib><creatorcontrib>Valedbagi, Shahoo</creatorcontrib><creatorcontrib>Jalilian, Jaafar</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Solid state sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fathalian, Ali</au><au>Valedbagi, Shahoo</au><au>Jalilian, Jaafar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ab initio density functional theory investigation of Li-intercalated zinc oxide nanotube bundles</atitle><jtitle>Solid state sciences</jtitle><date>2010-12-01</date><risdate>2010</risdate><volume>12</volume><issue>12</issue><spage>2042</spage><epage>2046</epage><pages>2042-2046</pages><issn>1293-2558</issn><eissn>1873-3085</eissn><abstract>We have investigated the energetic, and geometric and electronic structure of Li-intercalated (5,5) zinc oxide nanotube (ZnONT) bundles via density functional theory as implemented in the code WIEN2k. Our results showed that the most prominent effect of Li intercalation on the electronic band structure is a shift of the Fermi energy which occurs as a result of charge transfer from lithium to the ZnONTs. All the Li-intercalated (5,5) ZnONT bundles are predicted to be metallic representing a substantial change in electronic properties relative to the undoped bundle, which is a wide band gap semiconductor. Both inside of the nanotube and the interstitial spaces are susceptible for intercalation. The present calculations suggest that the single-walled zinc oxide nanotube (SwZnONT) bundle is a promising candidate for the anode material in battery applications. [Display omitted]</abstract><cop>Issy-les-Moulineaux</cop><pub>Elsevier Masson SAS</pub><doi>10.1016/j.solidstatesciences.2010.08.024</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1293-2558
ispartof Solid state sciences, 2010-12, Vol.12 (12), p.2042-2046
issn 1293-2558
1873-3085
language eng
recordid cdi_proquest_miscellaneous_1671327282
source ScienceDirect Journals
subjects Bundles
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Density functional theory
Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures
Electronic structure of nanoscale materials : clusters, nanoparticles, nanotubes, and nanocrystals
Exact sciences and technology
Fermi surfaces
Intercalation
Materials science
Nanocomposites
Nanomaterials
Nanoscale materials and structures: fabrication and characterization
Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals
Nanostructure
Nanotubes
Physics
Semiconductors
Structure of solids and liquids
crystallography
Zinc oxide
Zinc oxide nanotube bundle
title Ab initio density functional theory investigation of Li-intercalated zinc oxide nanotube bundles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A51%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ab%20initio%20density%20functional%20theory%20investigation%20of%20Li-intercalated%20zinc%20oxide%20nanotube%20bundles&rft.jtitle=Solid%20state%20sciences&rft.au=Fathalian,%20Ali&rft.date=2010-12-01&rft.volume=12&rft.issue=12&rft.spage=2042&rft.epage=2046&rft.pages=2042-2046&rft.issn=1293-2558&rft.eissn=1873-3085&rft_id=info:doi/10.1016/j.solidstatesciences.2010.08.024&rft_dat=%3Cproquest_cross%3E1671327282%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c405t-8e8666d609537ff2f9437cb223bbcd2d330ca43364d01a064809f78c94204c3f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671327282&rft_id=info:pmid/&rfr_iscdi=true