Loading…
Ab initio density functional theory investigation of Li-intercalated zinc oxide nanotube bundles
We have investigated the energetic, and geometric and electronic structure of Li-intercalated (5,5) zinc oxide nanotube (ZnONT) bundles via density functional theory as implemented in the code WIEN2k. Our results showed that the most prominent effect of Li intercalation on the electronic band struct...
Saved in:
Published in: | Solid state sciences 2010-12, Vol.12 (12), p.2042-2046 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c405t-8e8666d609537ff2f9437cb223bbcd2d330ca43364d01a064809f78c94204c3f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c405t-8e8666d609537ff2f9437cb223bbcd2d330ca43364d01a064809f78c94204c3f3 |
container_end_page | 2046 |
container_issue | 12 |
container_start_page | 2042 |
container_title | Solid state sciences |
container_volume | 12 |
creator | Fathalian, Ali Valedbagi, Shahoo Jalilian, Jaafar |
description | We have investigated the energetic, and geometric and electronic structure of Li-intercalated (5,5) zinc oxide nanotube (ZnONT) bundles via density functional theory as implemented in the code WIEN2k. Our results showed that the most prominent effect of Li intercalation on the electronic band structure is a shift of the Fermi energy which occurs as a result of charge transfer from lithium to the ZnONTs. All the Li-intercalated (5,5) ZnONT bundles are predicted to be metallic representing a substantial change in electronic properties relative to the undoped bundle, which is a wide band gap semiconductor. Both inside of the nanotube and the interstitial spaces are susceptible for intercalation. The present calculations suggest that the single-walled zinc oxide nanotube (SwZnONT) bundle is a promising candidate for the anode material in battery applications.
[Display omitted] |
doi_str_mv | 10.1016/j.solidstatesciences.2010.08.024 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671327282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1293255810003638</els_id><sourcerecordid>1671327282</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-8e8666d609537ff2f9437cb223bbcd2d330ca43364d01a064809f78c94204c3f3</originalsourceid><addsrcrecordid>eNqNkE9PHCEYhydNm9RqvwOXJl5m-w4wDHPTGGs1m3jRMzLw0rIZQYExbj-9bHbjpRdP_Hvy-708TXPawaqDTvzcrHKcvc1FF8zGYzCYVxTqM8gVUP6pOerkwFoGsv9c93RkLe17-bX5lvMGAIQY-FHzcD4RH3zxkVgM2ZctcUsw9Rz0TMpfjGlbgRfMxf_Ru2sSHVn71oeCyei51lvyzwdD4qu3SIIOsSwTkmkJdsZ80nxxes74_bAeN_e_Lu8ufrfr26vri_N1azj0pZUohRBWwNizwTnqRs4GM1HKpslYahkDozljglvoNAguYXSDNCOnwA1z7Lg53ec-pfi81HHVo88G51kHjEtWnRg6RgcqaUXP9qhJMeeETj0l_6jTVnWgdnLVRv0vV-3kKpCqyq0RPw5tOlcJLulgfH7PoUywgTJWuZs9h_XrLx6TOsRZn9AUZaP_eOkb6UWdlg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671327282</pqid></control><display><type>article</type><title>Ab initio density functional theory investigation of Li-intercalated zinc oxide nanotube bundles</title><source>ScienceDirect Journals</source><creator>Fathalian, Ali ; Valedbagi, Shahoo ; Jalilian, Jaafar</creator><creatorcontrib>Fathalian, Ali ; Valedbagi, Shahoo ; Jalilian, Jaafar</creatorcontrib><description>We have investigated the energetic, and geometric and electronic structure of Li-intercalated (5,5) zinc oxide nanotube (ZnONT) bundles via density functional theory as implemented in the code WIEN2k. Our results showed that the most prominent effect of Li intercalation on the electronic band structure is a shift of the Fermi energy which occurs as a result of charge transfer from lithium to the ZnONTs. All the Li-intercalated (5,5) ZnONT bundles are predicted to be metallic representing a substantial change in electronic properties relative to the undoped bundle, which is a wide band gap semiconductor. Both inside of the nanotube and the interstitial spaces are susceptible for intercalation. The present calculations suggest that the single-walled zinc oxide nanotube (SwZnONT) bundle is a promising candidate for the anode material in battery applications.
[Display omitted]</description><identifier>ISSN: 1293-2558</identifier><identifier>EISSN: 1873-3085</identifier><identifier>DOI: 10.1016/j.solidstatesciences.2010.08.024</identifier><language>eng</language><publisher>Issy-les-Moulineaux: Elsevier Masson SAS</publisher><subject>Bundles ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Density functional theory ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Electronic structure of nanoscale materials : clusters, nanoparticles, nanotubes, and nanocrystals ; Exact sciences and technology ; Fermi surfaces ; Intercalation ; Materials science ; Nanocomposites ; Nanomaterials ; Nanoscale materials and structures: fabrication and characterization ; Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals ; Nanostructure ; Nanotubes ; Physics ; Semiconductors ; Structure of solids and liquids; crystallography ; Zinc oxide ; Zinc oxide nanotube bundle</subject><ispartof>Solid state sciences, 2010-12, Vol.12 (12), p.2042-2046</ispartof><rights>2010</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-8e8666d609537ff2f9437cb223bbcd2d330ca43364d01a064809f78c94204c3f3</citedby><cites>FETCH-LOGICAL-c405t-8e8666d609537ff2f9437cb223bbcd2d330ca43364d01a064809f78c94204c3f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23637233$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Fathalian, Ali</creatorcontrib><creatorcontrib>Valedbagi, Shahoo</creatorcontrib><creatorcontrib>Jalilian, Jaafar</creatorcontrib><title>Ab initio density functional theory investigation of Li-intercalated zinc oxide nanotube bundles</title><title>Solid state sciences</title><description>We have investigated the energetic, and geometric and electronic structure of Li-intercalated (5,5) zinc oxide nanotube (ZnONT) bundles via density functional theory as implemented in the code WIEN2k. Our results showed that the most prominent effect of Li intercalation on the electronic band structure is a shift of the Fermi energy which occurs as a result of charge transfer from lithium to the ZnONTs. All the Li-intercalated (5,5) ZnONT bundles are predicted to be metallic representing a substantial change in electronic properties relative to the undoped bundle, which is a wide band gap semiconductor. Both inside of the nanotube and the interstitial spaces are susceptible for intercalation. The present calculations suggest that the single-walled zinc oxide nanotube (SwZnONT) bundle is a promising candidate for the anode material in battery applications.
[Display omitted]</description><subject>Bundles</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Density functional theory</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Electronic structure of nanoscale materials : clusters, nanoparticles, nanotubes, and nanocrystals</subject><subject>Exact sciences and technology</subject><subject>Fermi surfaces</subject><subject>Intercalation</subject><subject>Materials science</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals</subject><subject>Nanostructure</subject><subject>Nanotubes</subject><subject>Physics</subject><subject>Semiconductors</subject><subject>Structure of solids and liquids; crystallography</subject><subject>Zinc oxide</subject><subject>Zinc oxide nanotube bundle</subject><issn>1293-2558</issn><issn>1873-3085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNkE9PHCEYhydNm9RqvwOXJl5m-w4wDHPTGGs1m3jRMzLw0rIZQYExbj-9bHbjpRdP_Hvy-708TXPawaqDTvzcrHKcvc1FF8zGYzCYVxTqM8gVUP6pOerkwFoGsv9c93RkLe17-bX5lvMGAIQY-FHzcD4RH3zxkVgM2ZctcUsw9Rz0TMpfjGlbgRfMxf_Ru2sSHVn71oeCyei51lvyzwdD4qu3SIIOsSwTkmkJdsZ80nxxes74_bAeN_e_Lu8ufrfr26vri_N1azj0pZUohRBWwNizwTnqRs4GM1HKpslYahkDozljglvoNAguYXSDNCOnwA1z7Lg53ec-pfi81HHVo88G51kHjEtWnRg6RgcqaUXP9qhJMeeETj0l_6jTVnWgdnLVRv0vV-3kKpCqyq0RPw5tOlcJLulgfH7PoUywgTJWuZs9h_XrLx6TOsRZn9AUZaP_eOkb6UWdlg</recordid><startdate>20101201</startdate><enddate>20101201</enddate><creator>Fathalian, Ali</creator><creator>Valedbagi, Shahoo</creator><creator>Jalilian, Jaafar</creator><general>Elsevier Masson SAS</general><general>Elsevier Masson</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20101201</creationdate><title>Ab initio density functional theory investigation of Li-intercalated zinc oxide nanotube bundles</title><author>Fathalian, Ali ; Valedbagi, Shahoo ; Jalilian, Jaafar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-8e8666d609537ff2f9437cb223bbcd2d330ca43364d01a064809f78c94204c3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Bundles</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Density functional theory</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Electronic structure of nanoscale materials : clusters, nanoparticles, nanotubes, and nanocrystals</topic><topic>Exact sciences and technology</topic><topic>Fermi surfaces</topic><topic>Intercalation</topic><topic>Materials science</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals</topic><topic>Nanostructure</topic><topic>Nanotubes</topic><topic>Physics</topic><topic>Semiconductors</topic><topic>Structure of solids and liquids; crystallography</topic><topic>Zinc oxide</topic><topic>Zinc oxide nanotube bundle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fathalian, Ali</creatorcontrib><creatorcontrib>Valedbagi, Shahoo</creatorcontrib><creatorcontrib>Jalilian, Jaafar</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Solid state sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fathalian, Ali</au><au>Valedbagi, Shahoo</au><au>Jalilian, Jaafar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ab initio density functional theory investigation of Li-intercalated zinc oxide nanotube bundles</atitle><jtitle>Solid state sciences</jtitle><date>2010-12-01</date><risdate>2010</risdate><volume>12</volume><issue>12</issue><spage>2042</spage><epage>2046</epage><pages>2042-2046</pages><issn>1293-2558</issn><eissn>1873-3085</eissn><abstract>We have investigated the energetic, and geometric and electronic structure of Li-intercalated (5,5) zinc oxide nanotube (ZnONT) bundles via density functional theory as implemented in the code WIEN2k. Our results showed that the most prominent effect of Li intercalation on the electronic band structure is a shift of the Fermi energy which occurs as a result of charge transfer from lithium to the ZnONTs. All the Li-intercalated (5,5) ZnONT bundles are predicted to be metallic representing a substantial change in electronic properties relative to the undoped bundle, which is a wide band gap semiconductor. Both inside of the nanotube and the interstitial spaces are susceptible for intercalation. The present calculations suggest that the single-walled zinc oxide nanotube (SwZnONT) bundle is a promising candidate for the anode material in battery applications.
[Display omitted]</abstract><cop>Issy-les-Moulineaux</cop><pub>Elsevier Masson SAS</pub><doi>10.1016/j.solidstatesciences.2010.08.024</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1293-2558 |
ispartof | Solid state sciences, 2010-12, Vol.12 (12), p.2042-2046 |
issn | 1293-2558 1873-3085 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671327282 |
source | ScienceDirect Journals |
subjects | Bundles Condensed matter: electronic structure, electrical, magnetic, and optical properties Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology Density functional theory Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures Electronic structure of nanoscale materials : clusters, nanoparticles, nanotubes, and nanocrystals Exact sciences and technology Fermi surfaces Intercalation Materials science Nanocomposites Nanomaterials Nanoscale materials and structures: fabrication and characterization Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals Nanostructure Nanotubes Physics Semiconductors Structure of solids and liquids crystallography Zinc oxide Zinc oxide nanotube bundle |
title | Ab initio density functional theory investigation of Li-intercalated zinc oxide nanotube bundles |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A51%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ab%20initio%20density%20functional%20theory%20investigation%20of%20Li-intercalated%20zinc%20oxide%20nanotube%20bundles&rft.jtitle=Solid%20state%20sciences&rft.au=Fathalian,%20Ali&rft.date=2010-12-01&rft.volume=12&rft.issue=12&rft.spage=2042&rft.epage=2046&rft.pages=2042-2046&rft.issn=1293-2558&rft.eissn=1873-3085&rft_id=info:doi/10.1016/j.solidstatesciences.2010.08.024&rft_dat=%3Cproquest_cross%3E1671327282%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c405t-8e8666d609537ff2f9437cb223bbcd2d330ca43364d01a064809f78c94204c3f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671327282&rft_id=info:pmid/&rfr_iscdi=true |