Loading…
Optimisation of the VGF growth process by inverse modelling
Numerical and experimental results on the thermal optimisation of vertical gradient freeze crystal growth are presented. An inverse modelling approach is described aimed at solidification with a constant growth rate and planar solid–liquid interface. As a result of modelling an optimised growth proc...
Saved in:
Published in: | Journal of crystal growth 2010-07, Vol.312 (15), p.2175-2178 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Numerical and experimental results on the thermal optimisation of vertical gradient freeze crystal growth are presented. An inverse modelling approach is described aimed at solidification with a constant growth rate and planar solid–liquid interface. As a result of modelling an optimised growth process characterised by a modified ampoule configuration and thermal regime was established. For experimental confirmation Ga-doped germanium single crystals were grown with the optimised process. In good agreement with the numerical results, solidification with an almost constant growth rate was achieved with the interface deflection being significantly lower than in conventionally grown crystals. |
---|---|
ISSN: | 0022-0248 1873-5002 |
DOI: | 10.1016/j.jcrysgro.2010.04.036 |