Loading…

Volume preserving mean curvature flow of revolution hypersurfaces between two equidistants

In a rotationally symmetric space around an axis (whose precise definition is satisfied by all real space forms), we consider a domain G limited by two equidistant hypersurfaces orthogonal to . Let be a revolution hypersurface generated by a graph over , with boundary in ∂ G and orthogonal to it. We...

Full description

Saved in:
Bibliographic Details
Published in:Calculus of variations and partial differential equations 2012-01, Vol.43 (1-2), p.185-210
Main Authors: Cabezas-Rivas, Esther, Miquel, Vicente
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c414t-3c67bd953caefc1ee9269c4511dc863ac8249921387cdd0932ae4bd4c68b3faf3
cites cdi_FETCH-LOGICAL-c414t-3c67bd953caefc1ee9269c4511dc863ac8249921387cdd0932ae4bd4c68b3faf3
container_end_page 210
container_issue 1-2
container_start_page 185
container_title Calculus of variations and partial differential equations
container_volume 43
creator Cabezas-Rivas, Esther
Miquel, Vicente
description In a rotationally symmetric space around an axis (whose precise definition is satisfied by all real space forms), we consider a domain G limited by two equidistant hypersurfaces orthogonal to . Let be a revolution hypersurface generated by a graph over , with boundary in ∂ G and orthogonal to it. We study the evolution M t of M under the volume-preserving mean curvature flow requiring that the boundary of M t rests on ∂ G and stays orthogonal to it. We prove that: (a) the generating curve of M t remains a graph; (b) the flow exists as long as M t does not touch the rotation axis; (c) under a suitable hypothesis relating the enclosed volume and the area of M , the flow is defined for every and a sequence of hypersurfaces converges to a revolution hypersurface of constant mean curvature. Some key points are: (i) the results are true even for ambient spaces with positive curvature, (ii) the averaged mean curvature does not need to be positive and (iii) for the proof it is necessary to carry out a detailed study of the boundary conditions.
doi_str_mv 10.1007/s00526-011-0408-9
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671330680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671330680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-3c67bd953caefc1ee9269c4511dc863ac8249921387cdd0932ae4bd4c68b3faf3</originalsourceid><addsrcrecordid>eNp1kE1LxDAURYMoOI7-AHfBlZvqS5OmzVLELxhwoy7chDR9HTu0zUySzjD_3g4VBMHV3Zx7uRxCLhncMID8NgBkqUyAsQQEFIk6IjMmeJpAwbNjMgMlRJJKqU7JWQgrAJYVqZiRzw_XDh3StceAftv0S9qh6akd_NbEwSOtW7ejrqYetyMaG9fTr_0afRh8bSwGWmLcIfY07hzFzdBUTYimj-GcnNSmDXjxk3Py_vjwdv-cLF6fXu7vFokVTMSEW5mXlcq4NVhbhqhSqazIGKtsIbmx40-lUsaL3FYVKJ4aFGUlrCxKXpuaz8n1tLv2bjNgiLprgsW2NT26IWgmc8Y5yAJG9OoPunKD78d3WkEmpcjHH3PCJsh6F4LHWq990xm_1wz0QbaeZOtRtj7I1mrspFMnjGy_RP87_H_pG3hXg7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>905664795</pqid></control><display><type>article</type><title>Volume preserving mean curvature flow of revolution hypersurfaces between two equidistants</title><source>Springer Nature</source><creator>Cabezas-Rivas, Esther ; Miquel, Vicente</creator><creatorcontrib>Cabezas-Rivas, Esther ; Miquel, Vicente</creatorcontrib><description>In a rotationally symmetric space around an axis (whose precise definition is satisfied by all real space forms), we consider a domain G limited by two equidistant hypersurfaces orthogonal to . Let be a revolution hypersurface generated by a graph over , with boundary in ∂ G and orthogonal to it. We study the evolution M t of M under the volume-preserving mean curvature flow requiring that the boundary of M t rests on ∂ G and stays orthogonal to it. We prove that: (a) the generating curve of M t remains a graph; (b) the flow exists as long as M t does not touch the rotation axis; (c) under a suitable hypothesis relating the enclosed volume and the area of M , the flow is defined for every and a sequence of hypersurfaces converges to a revolution hypersurface of constant mean curvature. Some key points are: (i) the results are true even for ambient spaces with positive curvature, (ii) the averaged mean curvature does not need to be positive and (iii) for the proof it is necessary to carry out a detailed study of the boundary conditions.</description><identifier>ISSN: 0944-2669</identifier><identifier>EISSN: 1432-0835</identifier><identifier>DOI: 10.1007/s00526-011-0408-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Analysis ; Boundaries ; Boundary conditions ; Calculus of variations ; Calculus of Variations and Optimal Control; Optimization ; Control ; Curvature ; Evolution ; Graphs ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Rest ; Systems Theory ; Theoretical ; Touch</subject><ispartof>Calculus of variations and partial differential equations, 2012-01, Vol.43 (1-2), p.185-210</ispartof><rights>Springer-Verlag 2011</rights><rights>Springer-Verlag 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-3c67bd953caefc1ee9269c4511dc863ac8249921387cdd0932ae4bd4c68b3faf3</citedby><cites>FETCH-LOGICAL-c414t-3c67bd953caefc1ee9269c4511dc863ac8249921387cdd0932ae4bd4c68b3faf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Cabezas-Rivas, Esther</creatorcontrib><creatorcontrib>Miquel, Vicente</creatorcontrib><title>Volume preserving mean curvature flow of revolution hypersurfaces between two equidistants</title><title>Calculus of variations and partial differential equations</title><addtitle>Calc. Var</addtitle><description>In a rotationally symmetric space around an axis (whose precise definition is satisfied by all real space forms), we consider a domain G limited by two equidistant hypersurfaces orthogonal to . Let be a revolution hypersurface generated by a graph over , with boundary in ∂ G and orthogonal to it. We study the evolution M t of M under the volume-preserving mean curvature flow requiring that the boundary of M t rests on ∂ G and stays orthogonal to it. We prove that: (a) the generating curve of M t remains a graph; (b) the flow exists as long as M t does not touch the rotation axis; (c) under a suitable hypothesis relating the enclosed volume and the area of M , the flow is defined for every and a sequence of hypersurfaces converges to a revolution hypersurface of constant mean curvature. Some key points are: (i) the results are true even for ambient spaces with positive curvature, (ii) the averaged mean curvature does not need to be positive and (iii) for the proof it is necessary to carry out a detailed study of the boundary conditions.</description><subject>Analysis</subject><subject>Boundaries</subject><subject>Boundary conditions</subject><subject>Calculus of variations</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Curvature</subject><subject>Evolution</subject><subject>Graphs</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Rest</subject><subject>Systems Theory</subject><subject>Theoretical</subject><subject>Touch</subject><issn>0944-2669</issn><issn>1432-0835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAURYMoOI7-AHfBlZvqS5OmzVLELxhwoy7chDR9HTu0zUySzjD_3g4VBMHV3Zx7uRxCLhncMID8NgBkqUyAsQQEFIk6IjMmeJpAwbNjMgMlRJJKqU7JWQgrAJYVqZiRzw_XDh3StceAftv0S9qh6akd_NbEwSOtW7ejrqYetyMaG9fTr_0afRh8bSwGWmLcIfY07hzFzdBUTYimj-GcnNSmDXjxk3Py_vjwdv-cLF6fXu7vFokVTMSEW5mXlcq4NVhbhqhSqazIGKtsIbmx40-lUsaL3FYVKJ4aFGUlrCxKXpuaz8n1tLv2bjNgiLprgsW2NT26IWgmc8Y5yAJG9OoPunKD78d3WkEmpcjHH3PCJsh6F4LHWq990xm_1wz0QbaeZOtRtj7I1mrspFMnjGy_RP87_H_pG3hXg7w</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Cabezas-Rivas, Esther</creator><creator>Miquel, Vicente</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20120101</creationdate><title>Volume preserving mean curvature flow of revolution hypersurfaces between two equidistants</title><author>Cabezas-Rivas, Esther ; Miquel, Vicente</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-3c67bd953caefc1ee9269c4511dc863ac8249921387cdd0932ae4bd4c68b3faf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Analysis</topic><topic>Boundaries</topic><topic>Boundary conditions</topic><topic>Calculus of variations</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Curvature</topic><topic>Evolution</topic><topic>Graphs</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Rest</topic><topic>Systems Theory</topic><topic>Theoretical</topic><topic>Touch</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cabezas-Rivas, Esther</creatorcontrib><creatorcontrib>Miquel, Vicente</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Calculus of variations and partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cabezas-Rivas, Esther</au><au>Miquel, Vicente</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Volume preserving mean curvature flow of revolution hypersurfaces between two equidistants</atitle><jtitle>Calculus of variations and partial differential equations</jtitle><stitle>Calc. Var</stitle><date>2012-01-01</date><risdate>2012</risdate><volume>43</volume><issue>1-2</issue><spage>185</spage><epage>210</epage><pages>185-210</pages><issn>0944-2669</issn><eissn>1432-0835</eissn><abstract>In a rotationally symmetric space around an axis (whose precise definition is satisfied by all real space forms), we consider a domain G limited by two equidistant hypersurfaces orthogonal to . Let be a revolution hypersurface generated by a graph over , with boundary in ∂ G and orthogonal to it. We study the evolution M t of M under the volume-preserving mean curvature flow requiring that the boundary of M t rests on ∂ G and stays orthogonal to it. We prove that: (a) the generating curve of M t remains a graph; (b) the flow exists as long as M t does not touch the rotation axis; (c) under a suitable hypothesis relating the enclosed volume and the area of M , the flow is defined for every and a sequence of hypersurfaces converges to a revolution hypersurface of constant mean curvature. Some key points are: (i) the results are true even for ambient spaces with positive curvature, (ii) the averaged mean curvature does not need to be positive and (iii) for the proof it is necessary to carry out a detailed study of the boundary conditions.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00526-011-0408-9</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0944-2669
ispartof Calculus of variations and partial differential equations, 2012-01, Vol.43 (1-2), p.185-210
issn 0944-2669
1432-0835
language eng
recordid cdi_proquest_miscellaneous_1671330680
source Springer Nature
subjects Analysis
Boundaries
Boundary conditions
Calculus of variations
Calculus of Variations and Optimal Control
Optimization
Control
Curvature
Evolution
Graphs
Mathematical analysis
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Rest
Systems Theory
Theoretical
Touch
title Volume preserving mean curvature flow of revolution hypersurfaces between two equidistants
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A16%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Volume%20preserving%20mean%20curvature%20flow%20of%20revolution%20hypersurfaces%20between%20two%20equidistants&rft.jtitle=Calculus%20of%20variations%20and%20partial%20differential%20equations&rft.au=Cabezas-Rivas,%20Esther&rft.date=2012-01-01&rft.volume=43&rft.issue=1-2&rft.spage=185&rft.epage=210&rft.pages=185-210&rft.issn=0944-2669&rft.eissn=1432-0835&rft_id=info:doi/10.1007/s00526-011-0408-9&rft_dat=%3Cproquest_cross%3E1671330680%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c414t-3c67bd953caefc1ee9269c4511dc863ac8249921387cdd0932ae4bd4c68b3faf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=905664795&rft_id=info:pmid/&rfr_iscdi=true