Loading…

Achieving Resource-Efficient Survivable Provisioning in Service Differentiated WDM Mesh Networks

A resource-efficient provisioning framework (RPF) is proposed in this paper for optical networks providing dedicated path protection (DPP) and shared path protection (SPP) services. The framework reduces resource consumption by considering spare capacity reservation of DPP and SPP cooperatively whil...

Full description

Saved in:
Bibliographic Details
Published in:Journal of lightwave technology 2008-08, Vol.26 (16), p.2831-2839
Main Authors: Ni, Wenda, Zheng, Xiaoping, Zhu, Chunlei, Li, Yanhe, Guo, Yili, Zhang, Hanyi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A resource-efficient provisioning framework (RPF) is proposed in this paper for optical networks providing dedicated path protection (DPP) and shared path protection (SPP) services. The framework reduces resource consumption by considering spare capacity reservation of DPP and SPP cooperatively while provides 100% survivability guarantee and maintains the recovery time for both protection types against the predominant single link failures. To tackle the service provisioning problem under the framework, an integer linear programming (ILP) formulation is presented to find the optimal routing solution for a given set of traffic demands. The objective is to minimize total capacities consumed by working and backup paths of all demands. Then, heuristics are developed for on-line routing under dynamic change of traffic. Numerical results show that compared with traditional provisioning framework (TPF), the RPF has the following advantages: (1) Over 10% capacity savings are achieved for static service provisioning; (2) blocking probability of both protection types is greatly reduced; (3) lower resource over build is achieved; and (4) average backup-path hop distance of shared-path-protected flows is reduced. Finally, network survivability in face of double link failures is discussed under the framework.
ISSN:0733-8724
1558-2213
DOI:10.1109/JLT.2008.923253