Loading…
Using diagonals of orthogonal projection matrices for affine invariant contour matching
An efficient and rigorous algorithm is proposed for contour matching invariant to the full set of affine transformations. The algorithm is based on an invariant theory of orthogonal projection matrices derived from configuration matrices of point sets. Diagonals of the orthogonal projection matrices...
Saved in:
Published in: | Image and vision computing 2011-09, Vol.29 (10), p.681-692 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c339t-b6c86bcb60e70137107e3af33c9ffc2a64042c36bee5d21eecb90fd32d208dd83 |
---|---|
cites | cdi_FETCH-LOGICAL-c339t-b6c86bcb60e70137107e3af33c9ffc2a64042c36bee5d21eecb90fd32d208dd83 |
container_end_page | 692 |
container_issue | 10 |
container_start_page | 681 |
container_title | Image and vision computing |
container_volume | 29 |
creator | Wang, Zhaozhong Liang, Min Li, Y.F. |
description | An efficient and rigorous algorithm is proposed for contour matching invariant to the full set of affine transformations. The algorithm is based on an invariant theory of orthogonal projection matrices derived from configuration matrices of point sets. Diagonals of the orthogonal projection matrices (DOPM) are used as contour descriptors and affinity measures are deduced to act as criteria for contour matching. Perturbation analysis is performed using the theory of polar decomposition, resulting in quantitative perturbation bounds for the affine-invariant descriptors and the affinity measures. A useful schema of outlier removal based upon the monotonic property of contour correspondence is also embedded in the algorithm. Experiments for synthetic and real-world data are provided to test the algorithm and compare it with the state-of-the-art methods, validating that the algorithm is fast, robust and able to match partial contours with occlusions and outliers under affine or more complex transformations.
[Display omitted]
► Contour descriptors are invariant to affine and applicable under other transformations ► Quantitative perturbation bounds are proved for contour descriptors and affinity measures ► Algorithm is robust for the matching of partial contours under occlusions and outliers |
doi_str_mv | 10.1016/j.imavis.2011.07.005 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671336748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S026288561100062X</els_id><sourcerecordid>1671336748</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-b6c86bcb60e70137107e3af33c9ffc2a64042c36bee5d21eecb90fd32d208dd83</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKv_wEOOXrpOkm2yvQhS_IKCF4vHkM1O2ixtUpNtwX9vaj17mhl452HmIeSWQcWAyfu-8ltz8LniwFgFqgKYnpERaxSfNEw052QEXJa-mcpLcpVzDwAK1GxEPpfZhxXtvFnFYDaZRkdjGtbxd6S7FHu0g4-Bbs2QvMVMXUzUOOcDUh8OJnkTBmpjGOI-HVN2XYjX5MIVHN781TFZPj99zF8ni_eXt_njYmKFmA2TVtpGtraVgAqYUAwUCuOEsDPnLDeyhppbIVvEaccZom1n4DrBOw5N1zViTO5O3HLp1x7zoLc-W9xsTMC4z5pJxYSQqj5G61PUpphzQqd3qXhL35qBPnrUvT551EePGpQuHsvaw2kNyxsHj0ln6zFY7HwqanQX_f-AH2HNgAE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671336748</pqid></control><display><type>article</type><title>Using diagonals of orthogonal projection matrices for affine invariant contour matching</title><source>ScienceDirect Freedom Collection</source><creator>Wang, Zhaozhong ; Liang, Min ; Li, Y.F.</creator><creatorcontrib>Wang, Zhaozhong ; Liang, Min ; Li, Y.F.</creatorcontrib><description>An efficient and rigorous algorithm is proposed for contour matching invariant to the full set of affine transformations. The algorithm is based on an invariant theory of orthogonal projection matrices derived from configuration matrices of point sets. Diagonals of the orthogonal projection matrices (DOPM) are used as contour descriptors and affinity measures are deduced to act as criteria for contour matching. Perturbation analysis is performed using the theory of polar decomposition, resulting in quantitative perturbation bounds for the affine-invariant descriptors and the affinity measures. A useful schema of outlier removal based upon the monotonic property of contour correspondence is also embedded in the algorithm. Experiments for synthetic and real-world data are provided to test the algorithm and compare it with the state-of-the-art methods, validating that the algorithm is fast, robust and able to match partial contours with occlusions and outliers under affine or more complex transformations.
[Display omitted]
► Contour descriptors are invariant to affine and applicable under other transformations ► Quantitative perturbation bounds are proved for contour descriptors and affinity measures ► Algorithm is robust for the matching of partial contours under occlusions and outliers</description><identifier>ISSN: 0262-8856</identifier><identifier>EISSN: 1872-8138</identifier><identifier>DOI: 10.1016/j.imavis.2011.07.005</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Affine invariance ; Algorithms ; Contour matching ; Invariants ; Mathematical analysis ; Matrices ; Matrix methods ; Orthogonal projection matrix ; Perturbation analysis ; Polar decomposition ; Projection ; Shape ; Shape descriptor</subject><ispartof>Image and vision computing, 2011-09, Vol.29 (10), p.681-692</ispartof><rights>2011 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-b6c86bcb60e70137107e3af33c9ffc2a64042c36bee5d21eecb90fd32d208dd83</citedby><cites>FETCH-LOGICAL-c339t-b6c86bcb60e70137107e3af33c9ffc2a64042c36bee5d21eecb90fd32d208dd83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Wang, Zhaozhong</creatorcontrib><creatorcontrib>Liang, Min</creatorcontrib><creatorcontrib>Li, Y.F.</creatorcontrib><title>Using diagonals of orthogonal projection matrices for affine invariant contour matching</title><title>Image and vision computing</title><description>An efficient and rigorous algorithm is proposed for contour matching invariant to the full set of affine transformations. The algorithm is based on an invariant theory of orthogonal projection matrices derived from configuration matrices of point sets. Diagonals of the orthogonal projection matrices (DOPM) are used as contour descriptors and affinity measures are deduced to act as criteria for contour matching. Perturbation analysis is performed using the theory of polar decomposition, resulting in quantitative perturbation bounds for the affine-invariant descriptors and the affinity measures. A useful schema of outlier removal based upon the monotonic property of contour correspondence is also embedded in the algorithm. Experiments for synthetic and real-world data are provided to test the algorithm and compare it with the state-of-the-art methods, validating that the algorithm is fast, robust and able to match partial contours with occlusions and outliers under affine or more complex transformations.
[Display omitted]
► Contour descriptors are invariant to affine and applicable under other transformations ► Quantitative perturbation bounds are proved for contour descriptors and affinity measures ► Algorithm is robust for the matching of partial contours under occlusions and outliers</description><subject>Affine invariance</subject><subject>Algorithms</subject><subject>Contour matching</subject><subject>Invariants</subject><subject>Mathematical analysis</subject><subject>Matrices</subject><subject>Matrix methods</subject><subject>Orthogonal projection matrix</subject><subject>Perturbation analysis</subject><subject>Polar decomposition</subject><subject>Projection</subject><subject>Shape</subject><subject>Shape descriptor</subject><issn>0262-8856</issn><issn>1872-8138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKv_wEOOXrpOkm2yvQhS_IKCF4vHkM1O2ixtUpNtwX9vaj17mhl452HmIeSWQcWAyfu-8ltz8LniwFgFqgKYnpERaxSfNEw052QEXJa-mcpLcpVzDwAK1GxEPpfZhxXtvFnFYDaZRkdjGtbxd6S7FHu0g4-Bbs2QvMVMXUzUOOcDUh8OJnkTBmpjGOI-HVN2XYjX5MIVHN781TFZPj99zF8ni_eXt_njYmKFmA2TVtpGtraVgAqYUAwUCuOEsDPnLDeyhppbIVvEaccZom1n4DrBOw5N1zViTO5O3HLp1x7zoLc-W9xsTMC4z5pJxYSQqj5G61PUpphzQqd3qXhL35qBPnrUvT551EePGpQuHsvaw2kNyxsHj0ln6zFY7HwqanQX_f-AH2HNgAE</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>Wang, Zhaozhong</creator><creator>Liang, Min</creator><creator>Li, Y.F.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110901</creationdate><title>Using diagonals of orthogonal projection matrices for affine invariant contour matching</title><author>Wang, Zhaozhong ; Liang, Min ; Li, Y.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-b6c86bcb60e70137107e3af33c9ffc2a64042c36bee5d21eecb90fd32d208dd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Affine invariance</topic><topic>Algorithms</topic><topic>Contour matching</topic><topic>Invariants</topic><topic>Mathematical analysis</topic><topic>Matrices</topic><topic>Matrix methods</topic><topic>Orthogonal projection matrix</topic><topic>Perturbation analysis</topic><topic>Polar decomposition</topic><topic>Projection</topic><topic>Shape</topic><topic>Shape descriptor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhaozhong</creatorcontrib><creatorcontrib>Liang, Min</creatorcontrib><creatorcontrib>Li, Y.F.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Image and vision computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhaozhong</au><au>Liang, Min</au><au>Li, Y.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using diagonals of orthogonal projection matrices for affine invariant contour matching</atitle><jtitle>Image and vision computing</jtitle><date>2011-09-01</date><risdate>2011</risdate><volume>29</volume><issue>10</issue><spage>681</spage><epage>692</epage><pages>681-692</pages><issn>0262-8856</issn><eissn>1872-8138</eissn><abstract>An efficient and rigorous algorithm is proposed for contour matching invariant to the full set of affine transformations. The algorithm is based on an invariant theory of orthogonal projection matrices derived from configuration matrices of point sets. Diagonals of the orthogonal projection matrices (DOPM) are used as contour descriptors and affinity measures are deduced to act as criteria for contour matching. Perturbation analysis is performed using the theory of polar decomposition, resulting in quantitative perturbation bounds for the affine-invariant descriptors and the affinity measures. A useful schema of outlier removal based upon the monotonic property of contour correspondence is also embedded in the algorithm. Experiments for synthetic and real-world data are provided to test the algorithm and compare it with the state-of-the-art methods, validating that the algorithm is fast, robust and able to match partial contours with occlusions and outliers under affine or more complex transformations.
[Display omitted]
► Contour descriptors are invariant to affine and applicable under other transformations ► Quantitative perturbation bounds are proved for contour descriptors and affinity measures ► Algorithm is robust for the matching of partial contours under occlusions and outliers</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.imavis.2011.07.005</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0262-8856 |
ispartof | Image and vision computing, 2011-09, Vol.29 (10), p.681-692 |
issn | 0262-8856 1872-8138 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671336748 |
source | ScienceDirect Freedom Collection |
subjects | Affine invariance Algorithms Contour matching Invariants Mathematical analysis Matrices Matrix methods Orthogonal projection matrix Perturbation analysis Polar decomposition Projection Shape Shape descriptor |
title | Using diagonals of orthogonal projection matrices for affine invariant contour matching |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T02%3A23%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20diagonals%20of%20orthogonal%20projection%20matrices%20for%20affine%20invariant%20contour%20matching&rft.jtitle=Image%20and%20vision%20computing&rft.au=Wang,%20Zhaozhong&rft.date=2011-09-01&rft.volume=29&rft.issue=10&rft.spage=681&rft.epage=692&rft.pages=681-692&rft.issn=0262-8856&rft.eissn=1872-8138&rft_id=info:doi/10.1016/j.imavis.2011.07.005&rft_dat=%3Cproquest_cross%3E1671336748%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c339t-b6c86bcb60e70137107e3af33c9ffc2a64042c36bee5d21eecb90fd32d208dd83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671336748&rft_id=info:pmid/&rfr_iscdi=true |