Loading…

Using diagonals of orthogonal projection matrices for affine invariant contour matching

An efficient and rigorous algorithm is proposed for contour matching invariant to the full set of affine transformations. The algorithm is based on an invariant theory of orthogonal projection matrices derived from configuration matrices of point sets. Diagonals of the orthogonal projection matrices...

Full description

Saved in:
Bibliographic Details
Published in:Image and vision computing 2011-09, Vol.29 (10), p.681-692
Main Authors: Wang, Zhaozhong, Liang, Min, Li, Y.F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c339t-b6c86bcb60e70137107e3af33c9ffc2a64042c36bee5d21eecb90fd32d208dd83
cites cdi_FETCH-LOGICAL-c339t-b6c86bcb60e70137107e3af33c9ffc2a64042c36bee5d21eecb90fd32d208dd83
container_end_page 692
container_issue 10
container_start_page 681
container_title Image and vision computing
container_volume 29
creator Wang, Zhaozhong
Liang, Min
Li, Y.F.
description An efficient and rigorous algorithm is proposed for contour matching invariant to the full set of affine transformations. The algorithm is based on an invariant theory of orthogonal projection matrices derived from configuration matrices of point sets. Diagonals of the orthogonal projection matrices (DOPM) are used as contour descriptors and affinity measures are deduced to act as criteria for contour matching. Perturbation analysis is performed using the theory of polar decomposition, resulting in quantitative perturbation bounds for the affine-invariant descriptors and the affinity measures. A useful schema of outlier removal based upon the monotonic property of contour correspondence is also embedded in the algorithm. Experiments for synthetic and real-world data are provided to test the algorithm and compare it with the state-of-the-art methods, validating that the algorithm is fast, robust and able to match partial contours with occlusions and outliers under affine or more complex transformations. [Display omitted] ► Contour descriptors are invariant to affine and applicable under other transformations ► Quantitative perturbation bounds are proved for contour descriptors and affinity measures ► Algorithm is robust for the matching of partial contours under occlusions and outliers
doi_str_mv 10.1016/j.imavis.2011.07.005
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671336748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S026288561100062X</els_id><sourcerecordid>1671336748</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-b6c86bcb60e70137107e3af33c9ffc2a64042c36bee5d21eecb90fd32d208dd83</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKv_wEOOXrpOkm2yvQhS_IKCF4vHkM1O2ixtUpNtwX9vaj17mhl452HmIeSWQcWAyfu-8ltz8LniwFgFqgKYnpERaxSfNEw052QEXJa-mcpLcpVzDwAK1GxEPpfZhxXtvFnFYDaZRkdjGtbxd6S7FHu0g4-Bbs2QvMVMXUzUOOcDUh8OJnkTBmpjGOI-HVN2XYjX5MIVHN781TFZPj99zF8ni_eXt_njYmKFmA2TVtpGtraVgAqYUAwUCuOEsDPnLDeyhppbIVvEaccZom1n4DrBOw5N1zViTO5O3HLp1x7zoLc-W9xsTMC4z5pJxYSQqj5G61PUpphzQqd3qXhL35qBPnrUvT551EePGpQuHsvaw2kNyxsHj0ln6zFY7HwqanQX_f-AH2HNgAE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671336748</pqid></control><display><type>article</type><title>Using diagonals of orthogonal projection matrices for affine invariant contour matching</title><source>ScienceDirect Freedom Collection</source><creator>Wang, Zhaozhong ; Liang, Min ; Li, Y.F.</creator><creatorcontrib>Wang, Zhaozhong ; Liang, Min ; Li, Y.F.</creatorcontrib><description>An efficient and rigorous algorithm is proposed for contour matching invariant to the full set of affine transformations. The algorithm is based on an invariant theory of orthogonal projection matrices derived from configuration matrices of point sets. Diagonals of the orthogonal projection matrices (DOPM) are used as contour descriptors and affinity measures are deduced to act as criteria for contour matching. Perturbation analysis is performed using the theory of polar decomposition, resulting in quantitative perturbation bounds for the affine-invariant descriptors and the affinity measures. A useful schema of outlier removal based upon the monotonic property of contour correspondence is also embedded in the algorithm. Experiments for synthetic and real-world data are provided to test the algorithm and compare it with the state-of-the-art methods, validating that the algorithm is fast, robust and able to match partial contours with occlusions and outliers under affine or more complex transformations. [Display omitted] ► Contour descriptors are invariant to affine and applicable under other transformations ► Quantitative perturbation bounds are proved for contour descriptors and affinity measures ► Algorithm is robust for the matching of partial contours under occlusions and outliers</description><identifier>ISSN: 0262-8856</identifier><identifier>EISSN: 1872-8138</identifier><identifier>DOI: 10.1016/j.imavis.2011.07.005</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Affine invariance ; Algorithms ; Contour matching ; Invariants ; Mathematical analysis ; Matrices ; Matrix methods ; Orthogonal projection matrix ; Perturbation analysis ; Polar decomposition ; Projection ; Shape ; Shape descriptor</subject><ispartof>Image and vision computing, 2011-09, Vol.29 (10), p.681-692</ispartof><rights>2011 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-b6c86bcb60e70137107e3af33c9ffc2a64042c36bee5d21eecb90fd32d208dd83</citedby><cites>FETCH-LOGICAL-c339t-b6c86bcb60e70137107e3af33c9ffc2a64042c36bee5d21eecb90fd32d208dd83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Wang, Zhaozhong</creatorcontrib><creatorcontrib>Liang, Min</creatorcontrib><creatorcontrib>Li, Y.F.</creatorcontrib><title>Using diagonals of orthogonal projection matrices for affine invariant contour matching</title><title>Image and vision computing</title><description>An efficient and rigorous algorithm is proposed for contour matching invariant to the full set of affine transformations. The algorithm is based on an invariant theory of orthogonal projection matrices derived from configuration matrices of point sets. Diagonals of the orthogonal projection matrices (DOPM) are used as contour descriptors and affinity measures are deduced to act as criteria for contour matching. Perturbation analysis is performed using the theory of polar decomposition, resulting in quantitative perturbation bounds for the affine-invariant descriptors and the affinity measures. A useful schema of outlier removal based upon the monotonic property of contour correspondence is also embedded in the algorithm. Experiments for synthetic and real-world data are provided to test the algorithm and compare it with the state-of-the-art methods, validating that the algorithm is fast, robust and able to match partial contours with occlusions and outliers under affine or more complex transformations. [Display omitted] ► Contour descriptors are invariant to affine and applicable under other transformations ► Quantitative perturbation bounds are proved for contour descriptors and affinity measures ► Algorithm is robust for the matching of partial contours under occlusions and outliers</description><subject>Affine invariance</subject><subject>Algorithms</subject><subject>Contour matching</subject><subject>Invariants</subject><subject>Mathematical analysis</subject><subject>Matrices</subject><subject>Matrix methods</subject><subject>Orthogonal projection matrix</subject><subject>Perturbation analysis</subject><subject>Polar decomposition</subject><subject>Projection</subject><subject>Shape</subject><subject>Shape descriptor</subject><issn>0262-8856</issn><issn>1872-8138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKv_wEOOXrpOkm2yvQhS_IKCF4vHkM1O2ixtUpNtwX9vaj17mhl452HmIeSWQcWAyfu-8ltz8LniwFgFqgKYnpERaxSfNEw052QEXJa-mcpLcpVzDwAK1GxEPpfZhxXtvFnFYDaZRkdjGtbxd6S7FHu0g4-Bbs2QvMVMXUzUOOcDUh8OJnkTBmpjGOI-HVN2XYjX5MIVHN781TFZPj99zF8ni_eXt_njYmKFmA2TVtpGtraVgAqYUAwUCuOEsDPnLDeyhppbIVvEaccZom1n4DrBOw5N1zViTO5O3HLp1x7zoLc-W9xsTMC4z5pJxYSQqj5G61PUpphzQqd3qXhL35qBPnrUvT551EePGpQuHsvaw2kNyxsHj0ln6zFY7HwqanQX_f-AH2HNgAE</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>Wang, Zhaozhong</creator><creator>Liang, Min</creator><creator>Li, Y.F.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110901</creationdate><title>Using diagonals of orthogonal projection matrices for affine invariant contour matching</title><author>Wang, Zhaozhong ; Liang, Min ; Li, Y.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-b6c86bcb60e70137107e3af33c9ffc2a64042c36bee5d21eecb90fd32d208dd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Affine invariance</topic><topic>Algorithms</topic><topic>Contour matching</topic><topic>Invariants</topic><topic>Mathematical analysis</topic><topic>Matrices</topic><topic>Matrix methods</topic><topic>Orthogonal projection matrix</topic><topic>Perturbation analysis</topic><topic>Polar decomposition</topic><topic>Projection</topic><topic>Shape</topic><topic>Shape descriptor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhaozhong</creatorcontrib><creatorcontrib>Liang, Min</creatorcontrib><creatorcontrib>Li, Y.F.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Image and vision computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhaozhong</au><au>Liang, Min</au><au>Li, Y.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using diagonals of orthogonal projection matrices for affine invariant contour matching</atitle><jtitle>Image and vision computing</jtitle><date>2011-09-01</date><risdate>2011</risdate><volume>29</volume><issue>10</issue><spage>681</spage><epage>692</epage><pages>681-692</pages><issn>0262-8856</issn><eissn>1872-8138</eissn><abstract>An efficient and rigorous algorithm is proposed for contour matching invariant to the full set of affine transformations. The algorithm is based on an invariant theory of orthogonal projection matrices derived from configuration matrices of point sets. Diagonals of the orthogonal projection matrices (DOPM) are used as contour descriptors and affinity measures are deduced to act as criteria for contour matching. Perturbation analysis is performed using the theory of polar decomposition, resulting in quantitative perturbation bounds for the affine-invariant descriptors and the affinity measures. A useful schema of outlier removal based upon the monotonic property of contour correspondence is also embedded in the algorithm. Experiments for synthetic and real-world data are provided to test the algorithm and compare it with the state-of-the-art methods, validating that the algorithm is fast, robust and able to match partial contours with occlusions and outliers under affine or more complex transformations. [Display omitted] ► Contour descriptors are invariant to affine and applicable under other transformations ► Quantitative perturbation bounds are proved for contour descriptors and affinity measures ► Algorithm is robust for the matching of partial contours under occlusions and outliers</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.imavis.2011.07.005</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0262-8856
ispartof Image and vision computing, 2011-09, Vol.29 (10), p.681-692
issn 0262-8856
1872-8138
language eng
recordid cdi_proquest_miscellaneous_1671336748
source ScienceDirect Freedom Collection
subjects Affine invariance
Algorithms
Contour matching
Invariants
Mathematical analysis
Matrices
Matrix methods
Orthogonal projection matrix
Perturbation analysis
Polar decomposition
Projection
Shape
Shape descriptor
title Using diagonals of orthogonal projection matrices for affine invariant contour matching
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T02%3A23%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20diagonals%20of%20orthogonal%20projection%20matrices%20for%20affine%20invariant%20contour%20matching&rft.jtitle=Image%20and%20vision%20computing&rft.au=Wang,%20Zhaozhong&rft.date=2011-09-01&rft.volume=29&rft.issue=10&rft.spage=681&rft.epage=692&rft.pages=681-692&rft.issn=0262-8856&rft.eissn=1872-8138&rft_id=info:doi/10.1016/j.imavis.2011.07.005&rft_dat=%3Cproquest_cross%3E1671336748%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c339t-b6c86bcb60e70137107e3af33c9ffc2a64042c36bee5d21eecb90fd32d208dd83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671336748&rft_id=info:pmid/&rfr_iscdi=true