Loading…
Robust training of radial basis networks
Robust training of radial-basis networks under non-normally distributed noise is considered. The simulation results show that multistep projection training algorithms minimizing various forms of module criteria are rather efficient in this case.
Saved in:
Published in: | Cybernetics and systems analysis 2011-11, Vol.47 (6), p.863-870 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c421t-37968bded2c87d53e0349515d75dc024c18c43996cd717c299fbd26797e4bce13 |
---|---|
cites | cdi_FETCH-LOGICAL-c421t-37968bded2c87d53e0349515d75dc024c18c43996cd717c299fbd26797e4bce13 |
container_end_page | 870 |
container_issue | 6 |
container_start_page | 863 |
container_title | Cybernetics and systems analysis |
container_volume | 47 |
creator | Rudenko, O. G. Bezsonov, O. O. |
description | Robust training of radial-basis networks under non-normally distributed noise is considered. The simulation results show that multistep projection training algorithms minimizing various forms of module criteria are rather efficient in this case. |
doi_str_mv | 10.1007/s10559-011-9365-8 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671341906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A357472077</galeid><sourcerecordid>A357472077</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-37968bded2c87d53e0349515d75dc024c18c43996cd717c299fbd26797e4bce13</originalsourceid><addsrcrecordid>eNp1kV1LwzAUhoMoOKc_wLvi1bzoPGmaprkcw4_BQJh6HdIkLZldM5MW9d-bUUEUJBcnhOc5OYcXoUsMcwzAbgIGSnkKGKecFDQtj9AEU0bSkhB2HO9QQAqEF6foLIQtABBg5QTNNq4aQp_0XtrOdk3i6sRLbWWbVDLYkHSmf3f-NZyjk1q2wVx81yl6ubt9Xj6k68f71XKxTlWe4T4ljBdlpY3OVMk0JQZIzimmmlGtIMsVLlVOOC-UZpipjPO60lnBODN5pQwmUzQb--69extM6MXOBmXaVnbGDUHggmGSYw5FRK_-oFs3-C5OJzjw-G9JD_3mI9TI1gjb1S6uquLRZmeV60xt4_uCUJazDBiLwvUvITK9-egbOYQgVk-b3yweWeVdCN7UYu_tTvpPgUEcchFjLiLmIg65iDI62eiEyHaN8T9T_y99AUYkjG8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>909349851</pqid></control><display><type>article</type><title>Robust training of radial basis networks</title><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Rudenko, O. G. ; Bezsonov, O. O.</creator><creatorcontrib>Rudenko, O. G. ; Bezsonov, O. O.</creatorcontrib><description>Robust training of radial-basis networks under non-normally distributed noise is considered. The simulation results show that multistep projection training algorithms minimizing various forms of module criteria are rather efficient in this case.</description><identifier>ISSN: 1060-0396</identifier><identifier>EISSN: 1573-8337</identifier><identifier>DOI: 10.1007/s10559-011-9365-8</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algorithms ; Analysis ; Artificial Intelligence ; Computer simulation ; Control ; Criteria ; Cybernetics ; Estimates ; Mathematics ; Mathematics and Statistics ; Maximum likelihood method ; Networks ; Neural networks ; Noise ; Pattern recognition ; Processor Architectures ; Projection ; Software Engineering/Programming and Operating Systems ; Studies ; Systems Theory ; Training</subject><ispartof>Cybernetics and systems analysis, 2011-11, Vol.47 (6), p.863-870</ispartof><rights>Springer Science+Business Media, Inc. 2011</rights><rights>COPYRIGHT 2011 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-37968bded2c87d53e0349515d75dc024c18c43996cd717c299fbd26797e4bce13</citedby><cites>FETCH-LOGICAL-c421t-37968bded2c87d53e0349515d75dc024c18c43996cd717c299fbd26797e4bce13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/909349851?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363</link.rule.ids></links><search><creatorcontrib>Rudenko, O. G.</creatorcontrib><creatorcontrib>Bezsonov, O. O.</creatorcontrib><title>Robust training of radial basis networks</title><title>Cybernetics and systems analysis</title><addtitle>Cybern Syst Anal</addtitle><description>Robust training of radial-basis networks under non-normally distributed noise is considered. The simulation results show that multistep projection training algorithms minimizing various forms of module criteria are rather efficient in this case.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Artificial Intelligence</subject><subject>Computer simulation</subject><subject>Control</subject><subject>Criteria</subject><subject>Cybernetics</subject><subject>Estimates</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Maximum likelihood method</subject><subject>Networks</subject><subject>Neural networks</subject><subject>Noise</subject><subject>Pattern recognition</subject><subject>Processor Architectures</subject><subject>Projection</subject><subject>Software Engineering/Programming and Operating Systems</subject><subject>Studies</subject><subject>Systems Theory</subject><subject>Training</subject><issn>1060-0396</issn><issn>1573-8337</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kV1LwzAUhoMoOKc_wLvi1bzoPGmaprkcw4_BQJh6HdIkLZldM5MW9d-bUUEUJBcnhOc5OYcXoUsMcwzAbgIGSnkKGKecFDQtj9AEU0bSkhB2HO9QQAqEF6foLIQtABBg5QTNNq4aQp_0XtrOdk3i6sRLbWWbVDLYkHSmf3f-NZyjk1q2wVx81yl6ubt9Xj6k68f71XKxTlWe4T4ljBdlpY3OVMk0JQZIzimmmlGtIMsVLlVOOC-UZpipjPO60lnBODN5pQwmUzQb--69extM6MXOBmXaVnbGDUHggmGSYw5FRK_-oFs3-C5OJzjw-G9JD_3mI9TI1gjb1S6uquLRZmeV60xt4_uCUJazDBiLwvUvITK9-egbOYQgVk-b3yweWeVdCN7UYu_tTvpPgUEcchFjLiLmIg65iDI62eiEyHaN8T9T_y99AUYkjG8</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Rudenko, O. G.</creator><creator>Bezsonov, O. O.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>S0W</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20111101</creationdate><title>Robust training of radial basis networks</title><author>Rudenko, O. G. ; Bezsonov, O. O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-37968bded2c87d53e0349515d75dc024c18c43996cd717c299fbd26797e4bce13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Artificial Intelligence</topic><topic>Computer simulation</topic><topic>Control</topic><topic>Criteria</topic><topic>Cybernetics</topic><topic>Estimates</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Maximum likelihood method</topic><topic>Networks</topic><topic>Neural networks</topic><topic>Noise</topic><topic>Pattern recognition</topic><topic>Processor Architectures</topic><topic>Projection</topic><topic>Software Engineering/Programming and Operating Systems</topic><topic>Studies</topic><topic>Systems Theory</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rudenko, O. G.</creatorcontrib><creatorcontrib>Bezsonov, O. O.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Complete</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Cybernetics and systems analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rudenko, O. G.</au><au>Bezsonov, O. O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust training of radial basis networks</atitle><jtitle>Cybernetics and systems analysis</jtitle><stitle>Cybern Syst Anal</stitle><date>2011-11-01</date><risdate>2011</risdate><volume>47</volume><issue>6</issue><spage>863</spage><epage>870</epage><pages>863-870</pages><issn>1060-0396</issn><eissn>1573-8337</eissn><abstract>Robust training of radial-basis networks under non-normally distributed noise is considered. The simulation results show that multistep projection training algorithms minimizing various forms of module criteria are rather efficient in this case.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10559-011-9365-8</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1060-0396 |
ispartof | Cybernetics and systems analysis, 2011-11, Vol.47 (6), p.863-870 |
issn | 1060-0396 1573-8337 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671341906 |
source | ABI/INFORM Global; Springer Nature |
subjects | Algorithms Analysis Artificial Intelligence Computer simulation Control Criteria Cybernetics Estimates Mathematics Mathematics and Statistics Maximum likelihood method Networks Neural networks Noise Pattern recognition Processor Architectures Projection Software Engineering/Programming and Operating Systems Studies Systems Theory Training |
title | Robust training of radial basis networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T03%3A21%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20training%20of%20radial%20basis%20networks&rft.jtitle=Cybernetics%20and%20systems%20analysis&rft.au=Rudenko,%20O.%20G.&rft.date=2011-11-01&rft.volume=47&rft.issue=6&rft.spage=863&rft.epage=870&rft.pages=863-870&rft.issn=1060-0396&rft.eissn=1573-8337&rft_id=info:doi/10.1007/s10559-011-9365-8&rft_dat=%3Cgale_proqu%3EA357472077%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c421t-37968bded2c87d53e0349515d75dc024c18c43996cd717c299fbd26797e4bce13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=909349851&rft_id=info:pmid/&rft_galeid=A357472077&rfr_iscdi=true |