Loading…

Robust training of radial basis networks

Robust training of radial-basis networks under non-normally distributed noise is considered. The simulation results show that multistep projection training algorithms minimizing various forms of module criteria are rather efficient in this case.

Saved in:
Bibliographic Details
Published in:Cybernetics and systems analysis 2011-11, Vol.47 (6), p.863-870
Main Authors: Rudenko, O. G., Bezsonov, O. O.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c421t-37968bded2c87d53e0349515d75dc024c18c43996cd717c299fbd26797e4bce13
cites cdi_FETCH-LOGICAL-c421t-37968bded2c87d53e0349515d75dc024c18c43996cd717c299fbd26797e4bce13
container_end_page 870
container_issue 6
container_start_page 863
container_title Cybernetics and systems analysis
container_volume 47
creator Rudenko, O. G.
Bezsonov, O. O.
description Robust training of radial-basis networks under non-normally distributed noise is considered. The simulation results show that multistep projection training algorithms minimizing various forms of module criteria are rather efficient in this case.
doi_str_mv 10.1007/s10559-011-9365-8
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671341906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A357472077</galeid><sourcerecordid>A357472077</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-37968bded2c87d53e0349515d75dc024c18c43996cd717c299fbd26797e4bce13</originalsourceid><addsrcrecordid>eNp1kV1LwzAUhoMoOKc_wLvi1bzoPGmaprkcw4_BQJh6HdIkLZldM5MW9d-bUUEUJBcnhOc5OYcXoUsMcwzAbgIGSnkKGKecFDQtj9AEU0bSkhB2HO9QQAqEF6foLIQtABBg5QTNNq4aQp_0XtrOdk3i6sRLbWWbVDLYkHSmf3f-NZyjk1q2wVx81yl6ubt9Xj6k68f71XKxTlWe4T4ljBdlpY3OVMk0JQZIzimmmlGtIMsVLlVOOC-UZpipjPO60lnBODN5pQwmUzQb--69extM6MXOBmXaVnbGDUHggmGSYw5FRK_-oFs3-C5OJzjw-G9JD_3mI9TI1gjb1S6uquLRZmeV60xt4_uCUJazDBiLwvUvITK9-egbOYQgVk-b3yweWeVdCN7UYu_tTvpPgUEcchFjLiLmIg65iDI62eiEyHaN8T9T_y99AUYkjG8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>909349851</pqid></control><display><type>article</type><title>Robust training of radial basis networks</title><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Rudenko, O. G. ; Bezsonov, O. O.</creator><creatorcontrib>Rudenko, O. G. ; Bezsonov, O. O.</creatorcontrib><description>Robust training of radial-basis networks under non-normally distributed noise is considered. The simulation results show that multistep projection training algorithms minimizing various forms of module criteria are rather efficient in this case.</description><identifier>ISSN: 1060-0396</identifier><identifier>EISSN: 1573-8337</identifier><identifier>DOI: 10.1007/s10559-011-9365-8</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algorithms ; Analysis ; Artificial Intelligence ; Computer simulation ; Control ; Criteria ; Cybernetics ; Estimates ; Mathematics ; Mathematics and Statistics ; Maximum likelihood method ; Networks ; Neural networks ; Noise ; Pattern recognition ; Processor Architectures ; Projection ; Software Engineering/Programming and Operating Systems ; Studies ; Systems Theory ; Training</subject><ispartof>Cybernetics and systems analysis, 2011-11, Vol.47 (6), p.863-870</ispartof><rights>Springer Science+Business Media, Inc. 2011</rights><rights>COPYRIGHT 2011 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-37968bded2c87d53e0349515d75dc024c18c43996cd717c299fbd26797e4bce13</citedby><cites>FETCH-LOGICAL-c421t-37968bded2c87d53e0349515d75dc024c18c43996cd717c299fbd26797e4bce13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/909349851?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363</link.rule.ids></links><search><creatorcontrib>Rudenko, O. G.</creatorcontrib><creatorcontrib>Bezsonov, O. O.</creatorcontrib><title>Robust training of radial basis networks</title><title>Cybernetics and systems analysis</title><addtitle>Cybern Syst Anal</addtitle><description>Robust training of radial-basis networks under non-normally distributed noise is considered. The simulation results show that multistep projection training algorithms minimizing various forms of module criteria are rather efficient in this case.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Artificial Intelligence</subject><subject>Computer simulation</subject><subject>Control</subject><subject>Criteria</subject><subject>Cybernetics</subject><subject>Estimates</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Maximum likelihood method</subject><subject>Networks</subject><subject>Neural networks</subject><subject>Noise</subject><subject>Pattern recognition</subject><subject>Processor Architectures</subject><subject>Projection</subject><subject>Software Engineering/Programming and Operating Systems</subject><subject>Studies</subject><subject>Systems Theory</subject><subject>Training</subject><issn>1060-0396</issn><issn>1573-8337</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kV1LwzAUhoMoOKc_wLvi1bzoPGmaprkcw4_BQJh6HdIkLZldM5MW9d-bUUEUJBcnhOc5OYcXoUsMcwzAbgIGSnkKGKecFDQtj9AEU0bSkhB2HO9QQAqEF6foLIQtABBg5QTNNq4aQp_0XtrOdk3i6sRLbWWbVDLYkHSmf3f-NZyjk1q2wVx81yl6ubt9Xj6k68f71XKxTlWe4T4ljBdlpY3OVMk0JQZIzimmmlGtIMsVLlVOOC-UZpipjPO60lnBODN5pQwmUzQb--69extM6MXOBmXaVnbGDUHggmGSYw5FRK_-oFs3-C5OJzjw-G9JD_3mI9TI1gjb1S6uquLRZmeV60xt4_uCUJazDBiLwvUvITK9-egbOYQgVk-b3yweWeVdCN7UYu_tTvpPgUEcchFjLiLmIg65iDI62eiEyHaN8T9T_y99AUYkjG8</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Rudenko, O. G.</creator><creator>Bezsonov, O. O.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>S0W</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20111101</creationdate><title>Robust training of radial basis networks</title><author>Rudenko, O. G. ; Bezsonov, O. O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-37968bded2c87d53e0349515d75dc024c18c43996cd717c299fbd26797e4bce13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Artificial Intelligence</topic><topic>Computer simulation</topic><topic>Control</topic><topic>Criteria</topic><topic>Cybernetics</topic><topic>Estimates</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Maximum likelihood method</topic><topic>Networks</topic><topic>Neural networks</topic><topic>Noise</topic><topic>Pattern recognition</topic><topic>Processor Architectures</topic><topic>Projection</topic><topic>Software Engineering/Programming and Operating Systems</topic><topic>Studies</topic><topic>Systems Theory</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rudenko, O. G.</creatorcontrib><creatorcontrib>Bezsonov, O. O.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Complete</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Cybernetics and systems analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rudenko, O. G.</au><au>Bezsonov, O. O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust training of radial basis networks</atitle><jtitle>Cybernetics and systems analysis</jtitle><stitle>Cybern Syst Anal</stitle><date>2011-11-01</date><risdate>2011</risdate><volume>47</volume><issue>6</issue><spage>863</spage><epage>870</epage><pages>863-870</pages><issn>1060-0396</issn><eissn>1573-8337</eissn><abstract>Robust training of radial-basis networks under non-normally distributed noise is considered. The simulation results show that multistep projection training algorithms minimizing various forms of module criteria are rather efficient in this case.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10559-011-9365-8</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1060-0396
ispartof Cybernetics and systems analysis, 2011-11, Vol.47 (6), p.863-870
issn 1060-0396
1573-8337
language eng
recordid cdi_proquest_miscellaneous_1671341906
source ABI/INFORM Global; Springer Nature
subjects Algorithms
Analysis
Artificial Intelligence
Computer simulation
Control
Criteria
Cybernetics
Estimates
Mathematics
Mathematics and Statistics
Maximum likelihood method
Networks
Neural networks
Noise
Pattern recognition
Processor Architectures
Projection
Software Engineering/Programming and Operating Systems
Studies
Systems Theory
Training
title Robust training of radial basis networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T03%3A21%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20training%20of%20radial%20basis%20networks&rft.jtitle=Cybernetics%20and%20systems%20analysis&rft.au=Rudenko,%20O.%20G.&rft.date=2011-11-01&rft.volume=47&rft.issue=6&rft.spage=863&rft.epage=870&rft.pages=863-870&rft.issn=1060-0396&rft.eissn=1573-8337&rft_id=info:doi/10.1007/s10559-011-9365-8&rft_dat=%3Cgale_proqu%3EA357472077%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c421t-37968bded2c87d53e0349515d75dc024c18c43996cd717c299fbd26797e4bce13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=909349851&rft_id=info:pmid/&rft_galeid=A357472077&rfr_iscdi=true