Loading…

On the variance of random polygons

A random polygon is the convex hull of uniformly distributed random points in a convex body K⊂R2. General upper bounds are established for the variance of the area of a random polygon and also for the variance of its number of vertices. The upper bounds have the same order of magnitude as the known...

Full description

Saved in:
Bibliographic Details
Published in:Computational geometry : theory and applications 2013-02, Vol.46 (2), p.173-180
Main Authors: Bárány, Imre, Steiger, William
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c385t-9c3656b4faf1270ed3f10037e2022834592c42b89cafccd427315633a64f58da3
cites cdi_FETCH-LOGICAL-c385t-9c3656b4faf1270ed3f10037e2022834592c42b89cafccd427315633a64f58da3
container_end_page 180
container_issue 2
container_start_page 173
container_title Computational geometry : theory and applications
container_volume 46
creator Bárány, Imre
Steiger, William
description A random polygon is the convex hull of uniformly distributed random points in a convex body K⊂R2. General upper bounds are established for the variance of the area of a random polygon and also for the variance of its number of vertices. The upper bounds have the same order of magnitude as the known lower bounds on variance for these functionals. The results imply a strong law of large numbers for the area and number of vertices of random polygons for all planar convex bodies. Similar results had been known, but only in the special cases when K is a polygon or where K is a smooth convex body. The careful, technical arguments we needed may lead to tools for analogous extensions to general convex bodies in higher dimension. On the other hand one of the main results is a stronger version in dimension d=2 of the economic cap covering theorem of Bárány and Larman. It is crucial to our proof, but it does not extend to higher dimension.
doi_str_mv 10.1016/j.comgeo.2012.01.003
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671342185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925772112000168</els_id><sourcerecordid>1671342185</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-9c3656b4faf1270ed3f10037e2022834592c42b89cafccd427315633a64f58da3</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhj2ARCm8AUPExJLg40suCxKquEmVusBsuc5xcZTExU4r9e1xFWams_yX83-E3AEtgEL52BXGDzv0BaPACgoFpfyCLGjDZF5VDK7IdYwdpZQx2SzI_WbMpm_Mjjo4PRrMvM2CHls_ZHvfn3Z-jDfk0uo-4u3fXZKv15fP1Xu-3rx9rJ7XueG1nPLG8FKWW2G1BVZRbLmF1F0hS1U1F7JhRrBt3RhtjWkFqzjIknNdCivrVvMleZhz98H_HDBOanDRYN_rEf0hKigr4IJBLZNUzFITfIwBrdoHN-hwUkDVGYPq1IxBnTEoCiq9kmxPsw3TjKPDoKJxmFa3LqCZVOvd_wG_0bRnnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671342185</pqid></control><display><type>article</type><title>On the variance of random polygons</title><source>ScienceDirect Freedom Collection</source><creator>Bárány, Imre ; Steiger, William</creator><creatorcontrib>Bárány, Imre ; Steiger, William</creatorcontrib><description>A random polygon is the convex hull of uniformly distributed random points in a convex body K⊂R2. General upper bounds are established for the variance of the area of a random polygon and also for the variance of its number of vertices. The upper bounds have the same order of magnitude as the known lower bounds on variance for these functionals. The results imply a strong law of large numbers for the area and number of vertices of random polygons for all planar convex bodies. Similar results had been known, but only in the special cases when K is a polygon or where K is a smooth convex body. The careful, technical arguments we needed may lead to tools for analogous extensions to general convex bodies in higher dimension. On the other hand one of the main results is a stronger version in dimension d=2 of the economic cap covering theorem of Bárány and Larman. It is crucial to our proof, but it does not extend to higher dimension.</description><identifier>ISSN: 0925-7721</identifier><identifier>DOI: 10.1016/j.comgeo.2012.01.003</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Convex sets ; Economic cap covering ; Economics ; Hulls ; Hulls (structures) ; Law ; Lower bounds ; Polygons ; Random polygons ; Upper bounds ; Variance ; Variances</subject><ispartof>Computational geometry : theory and applications, 2013-02, Vol.46 (2), p.173-180</ispartof><rights>2012 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-9c3656b4faf1270ed3f10037e2022834592c42b89cafccd427315633a64f58da3</citedby><cites>FETCH-LOGICAL-c385t-9c3656b4faf1270ed3f10037e2022834592c42b89cafccd427315633a64f58da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Bárány, Imre</creatorcontrib><creatorcontrib>Steiger, William</creatorcontrib><title>On the variance of random polygons</title><title>Computational geometry : theory and applications</title><description>A random polygon is the convex hull of uniformly distributed random points in a convex body K⊂R2. General upper bounds are established for the variance of the area of a random polygon and also for the variance of its number of vertices. The upper bounds have the same order of magnitude as the known lower bounds on variance for these functionals. The results imply a strong law of large numbers for the area and number of vertices of random polygons for all planar convex bodies. Similar results had been known, but only in the special cases when K is a polygon or where K is a smooth convex body. The careful, technical arguments we needed may lead to tools for analogous extensions to general convex bodies in higher dimension. On the other hand one of the main results is a stronger version in dimension d=2 of the economic cap covering theorem of Bárány and Larman. It is crucial to our proof, but it does not extend to higher dimension.</description><subject>Convex sets</subject><subject>Economic cap covering</subject><subject>Economics</subject><subject>Hulls</subject><subject>Hulls (structures)</subject><subject>Law</subject><subject>Lower bounds</subject><subject>Polygons</subject><subject>Random polygons</subject><subject>Upper bounds</subject><subject>Variance</subject><subject>Variances</subject><issn>0925-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOwzAUhj2ARCm8AUPExJLg40suCxKquEmVusBsuc5xcZTExU4r9e1xFWams_yX83-E3AEtgEL52BXGDzv0BaPACgoFpfyCLGjDZF5VDK7IdYwdpZQx2SzI_WbMpm_Mjjo4PRrMvM2CHls_ZHvfn3Z-jDfk0uo-4u3fXZKv15fP1Xu-3rx9rJ7XueG1nPLG8FKWW2G1BVZRbLmF1F0hS1U1F7JhRrBt3RhtjWkFqzjIknNdCivrVvMleZhz98H_HDBOanDRYN_rEf0hKigr4IJBLZNUzFITfIwBrdoHN-hwUkDVGYPq1IxBnTEoCiq9kmxPsw3TjKPDoKJxmFa3LqCZVOvd_wG_0bRnnA</recordid><startdate>201302</startdate><enddate>201302</enddate><creator>Bárány, Imre</creator><creator>Steiger, William</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201302</creationdate><title>On the variance of random polygons</title><author>Bárány, Imre ; Steiger, William</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-9c3656b4faf1270ed3f10037e2022834592c42b89cafccd427315633a64f58da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Convex sets</topic><topic>Economic cap covering</topic><topic>Economics</topic><topic>Hulls</topic><topic>Hulls (structures)</topic><topic>Law</topic><topic>Lower bounds</topic><topic>Polygons</topic><topic>Random polygons</topic><topic>Upper bounds</topic><topic>Variance</topic><topic>Variances</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bárány, Imre</creatorcontrib><creatorcontrib>Steiger, William</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational geometry : theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bárány, Imre</au><au>Steiger, William</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the variance of random polygons</atitle><jtitle>Computational geometry : theory and applications</jtitle><date>2013-02</date><risdate>2013</risdate><volume>46</volume><issue>2</issue><spage>173</spage><epage>180</epage><pages>173-180</pages><issn>0925-7721</issn><abstract>A random polygon is the convex hull of uniformly distributed random points in a convex body K⊂R2. General upper bounds are established for the variance of the area of a random polygon and also for the variance of its number of vertices. The upper bounds have the same order of magnitude as the known lower bounds on variance for these functionals. The results imply a strong law of large numbers for the area and number of vertices of random polygons for all planar convex bodies. Similar results had been known, but only in the special cases when K is a polygon or where K is a smooth convex body. The careful, technical arguments we needed may lead to tools for analogous extensions to general convex bodies in higher dimension. On the other hand one of the main results is a stronger version in dimension d=2 of the economic cap covering theorem of Bárány and Larman. It is crucial to our proof, but it does not extend to higher dimension.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.comgeo.2012.01.003</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0925-7721
ispartof Computational geometry : theory and applications, 2013-02, Vol.46 (2), p.173-180
issn 0925-7721
language eng
recordid cdi_proquest_miscellaneous_1671342185
source ScienceDirect Freedom Collection
subjects Convex sets
Economic cap covering
Economics
Hulls
Hulls (structures)
Law
Lower bounds
Polygons
Random polygons
Upper bounds
Variance
Variances
title On the variance of random polygons
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T23%3A06%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20variance%20of%20random%20polygons&rft.jtitle=Computational%20geometry%20:%20theory%20and%20applications&rft.au=B%C3%A1r%C3%A1ny,%20Imre&rft.date=2013-02&rft.volume=46&rft.issue=2&rft.spage=173&rft.epage=180&rft.pages=173-180&rft.issn=0925-7721&rft_id=info:doi/10.1016/j.comgeo.2012.01.003&rft_dat=%3Cproquest_cross%3E1671342185%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-9c3656b4faf1270ed3f10037e2022834592c42b89cafccd427315633a64f58da3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671342185&rft_id=info:pmid/&rfr_iscdi=true