Loading…
On the variance of random polygons
A random polygon is the convex hull of uniformly distributed random points in a convex body K⊂R2. General upper bounds are established for the variance of the area of a random polygon and also for the variance of its number of vertices. The upper bounds have the same order of magnitude as the known...
Saved in:
Published in: | Computational geometry : theory and applications 2013-02, Vol.46 (2), p.173-180 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c385t-9c3656b4faf1270ed3f10037e2022834592c42b89cafccd427315633a64f58da3 |
---|---|
cites | cdi_FETCH-LOGICAL-c385t-9c3656b4faf1270ed3f10037e2022834592c42b89cafccd427315633a64f58da3 |
container_end_page | 180 |
container_issue | 2 |
container_start_page | 173 |
container_title | Computational geometry : theory and applications |
container_volume | 46 |
creator | Bárány, Imre Steiger, William |
description | A random polygon is the convex hull of uniformly distributed random points in a convex body K⊂R2. General upper bounds are established for the variance of the area of a random polygon and also for the variance of its number of vertices. The upper bounds have the same order of magnitude as the known lower bounds on variance for these functionals. The results imply a strong law of large numbers for the area and number of vertices of random polygons for all planar convex bodies. Similar results had been known, but only in the special cases when K is a polygon or where K is a smooth convex body. The careful, technical arguments we needed may lead to tools for analogous extensions to general convex bodies in higher dimension. On the other hand one of the main results is a stronger version in dimension d=2 of the economic cap covering theorem of Bárány and Larman. It is crucial to our proof, but it does not extend to higher dimension. |
doi_str_mv | 10.1016/j.comgeo.2012.01.003 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671342185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925772112000168</els_id><sourcerecordid>1671342185</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-9c3656b4faf1270ed3f10037e2022834592c42b89cafccd427315633a64f58da3</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhj2ARCm8AUPExJLg40suCxKquEmVusBsuc5xcZTExU4r9e1xFWams_yX83-E3AEtgEL52BXGDzv0BaPACgoFpfyCLGjDZF5VDK7IdYwdpZQx2SzI_WbMpm_Mjjo4PRrMvM2CHls_ZHvfn3Z-jDfk0uo-4u3fXZKv15fP1Xu-3rx9rJ7XueG1nPLG8FKWW2G1BVZRbLmF1F0hS1U1F7JhRrBt3RhtjWkFqzjIknNdCivrVvMleZhz98H_HDBOanDRYN_rEf0hKigr4IJBLZNUzFITfIwBrdoHN-hwUkDVGYPq1IxBnTEoCiq9kmxPsw3TjKPDoKJxmFa3LqCZVOvd_wG_0bRnnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671342185</pqid></control><display><type>article</type><title>On the variance of random polygons</title><source>ScienceDirect Freedom Collection</source><creator>Bárány, Imre ; Steiger, William</creator><creatorcontrib>Bárány, Imre ; Steiger, William</creatorcontrib><description>A random polygon is the convex hull of uniformly distributed random points in a convex body K⊂R2. General upper bounds are established for the variance of the area of a random polygon and also for the variance of its number of vertices. The upper bounds have the same order of magnitude as the known lower bounds on variance for these functionals. The results imply a strong law of large numbers for the area and number of vertices of random polygons for all planar convex bodies. Similar results had been known, but only in the special cases when K is a polygon or where K is a smooth convex body. The careful, technical arguments we needed may lead to tools for analogous extensions to general convex bodies in higher dimension. On the other hand one of the main results is a stronger version in dimension d=2 of the economic cap covering theorem of Bárány and Larman. It is crucial to our proof, but it does not extend to higher dimension.</description><identifier>ISSN: 0925-7721</identifier><identifier>DOI: 10.1016/j.comgeo.2012.01.003</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Convex sets ; Economic cap covering ; Economics ; Hulls ; Hulls (structures) ; Law ; Lower bounds ; Polygons ; Random polygons ; Upper bounds ; Variance ; Variances</subject><ispartof>Computational geometry : theory and applications, 2013-02, Vol.46 (2), p.173-180</ispartof><rights>2012 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-9c3656b4faf1270ed3f10037e2022834592c42b89cafccd427315633a64f58da3</citedby><cites>FETCH-LOGICAL-c385t-9c3656b4faf1270ed3f10037e2022834592c42b89cafccd427315633a64f58da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Bárány, Imre</creatorcontrib><creatorcontrib>Steiger, William</creatorcontrib><title>On the variance of random polygons</title><title>Computational geometry : theory and applications</title><description>A random polygon is the convex hull of uniformly distributed random points in a convex body K⊂R2. General upper bounds are established for the variance of the area of a random polygon and also for the variance of its number of vertices. The upper bounds have the same order of magnitude as the known lower bounds on variance for these functionals. The results imply a strong law of large numbers for the area and number of vertices of random polygons for all planar convex bodies. Similar results had been known, but only in the special cases when K is a polygon or where K is a smooth convex body. The careful, technical arguments we needed may lead to tools for analogous extensions to general convex bodies in higher dimension. On the other hand one of the main results is a stronger version in dimension d=2 of the economic cap covering theorem of Bárány and Larman. It is crucial to our proof, but it does not extend to higher dimension.</description><subject>Convex sets</subject><subject>Economic cap covering</subject><subject>Economics</subject><subject>Hulls</subject><subject>Hulls (structures)</subject><subject>Law</subject><subject>Lower bounds</subject><subject>Polygons</subject><subject>Random polygons</subject><subject>Upper bounds</subject><subject>Variance</subject><subject>Variances</subject><issn>0925-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOwzAUhj2ARCm8AUPExJLg40suCxKquEmVusBsuc5xcZTExU4r9e1xFWams_yX83-E3AEtgEL52BXGDzv0BaPACgoFpfyCLGjDZF5VDK7IdYwdpZQx2SzI_WbMpm_Mjjo4PRrMvM2CHls_ZHvfn3Z-jDfk0uo-4u3fXZKv15fP1Xu-3rx9rJ7XueG1nPLG8FKWW2G1BVZRbLmF1F0hS1U1F7JhRrBt3RhtjWkFqzjIknNdCivrVvMleZhz98H_HDBOanDRYN_rEf0hKigr4IJBLZNUzFITfIwBrdoHN-hwUkDVGYPq1IxBnTEoCiq9kmxPsw3TjKPDoKJxmFa3LqCZVOvd_wG_0bRnnA</recordid><startdate>201302</startdate><enddate>201302</enddate><creator>Bárány, Imre</creator><creator>Steiger, William</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201302</creationdate><title>On the variance of random polygons</title><author>Bárány, Imre ; Steiger, William</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-9c3656b4faf1270ed3f10037e2022834592c42b89cafccd427315633a64f58da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Convex sets</topic><topic>Economic cap covering</topic><topic>Economics</topic><topic>Hulls</topic><topic>Hulls (structures)</topic><topic>Law</topic><topic>Lower bounds</topic><topic>Polygons</topic><topic>Random polygons</topic><topic>Upper bounds</topic><topic>Variance</topic><topic>Variances</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bárány, Imre</creatorcontrib><creatorcontrib>Steiger, William</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational geometry : theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bárány, Imre</au><au>Steiger, William</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the variance of random polygons</atitle><jtitle>Computational geometry : theory and applications</jtitle><date>2013-02</date><risdate>2013</risdate><volume>46</volume><issue>2</issue><spage>173</spage><epage>180</epage><pages>173-180</pages><issn>0925-7721</issn><abstract>A random polygon is the convex hull of uniformly distributed random points in a convex body K⊂R2. General upper bounds are established for the variance of the area of a random polygon and also for the variance of its number of vertices. The upper bounds have the same order of magnitude as the known lower bounds on variance for these functionals. The results imply a strong law of large numbers for the area and number of vertices of random polygons for all planar convex bodies. Similar results had been known, but only in the special cases when K is a polygon or where K is a smooth convex body. The careful, technical arguments we needed may lead to tools for analogous extensions to general convex bodies in higher dimension. On the other hand one of the main results is a stronger version in dimension d=2 of the economic cap covering theorem of Bárány and Larman. It is crucial to our proof, but it does not extend to higher dimension.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.comgeo.2012.01.003</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-7721 |
ispartof | Computational geometry : theory and applications, 2013-02, Vol.46 (2), p.173-180 |
issn | 0925-7721 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671342185 |
source | ScienceDirect Freedom Collection |
subjects | Convex sets Economic cap covering Economics Hulls Hulls (structures) Law Lower bounds Polygons Random polygons Upper bounds Variance Variances |
title | On the variance of random polygons |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T23%3A06%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20variance%20of%20random%20polygons&rft.jtitle=Computational%20geometry%20:%20theory%20and%20applications&rft.au=B%C3%A1r%C3%A1ny,%20Imre&rft.date=2013-02&rft.volume=46&rft.issue=2&rft.spage=173&rft.epage=180&rft.pages=173-180&rft.issn=0925-7721&rft_id=info:doi/10.1016/j.comgeo.2012.01.003&rft_dat=%3Cproquest_cross%3E1671342185%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-9c3656b4faf1270ed3f10037e2022834592c42b89cafccd427315633a64f58da3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671342185&rft_id=info:pmid/&rfr_iscdi=true |