Loading…
Joint Physical Layer Coding and Network Coding for Bidirectional Relaying
We consider a communication system where two transmitters wish to exchange information through a central relay. The transmitter and relay nodes exchange data over synchronized, average power constrained additive white Gaussian noise channels with a real input with signal-to-noise ratio (SNR) of snr....
Saved in:
Published in: | IEEE transactions on information theory 2010-11, Vol.56 (11), p.5641-5654 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c461t-696609f91fa73de951a3465ef04d2d73564c6a9d6069c4227be20bd3fc0007763 |
---|---|
cites | cdi_FETCH-LOGICAL-c461t-696609f91fa73de951a3465ef04d2d73564c6a9d6069c4227be20bd3fc0007763 |
container_end_page | 5654 |
container_issue | 11 |
container_start_page | 5641 |
container_title | IEEE transactions on information theory |
container_volume | 56 |
creator | Wilson, Makesh Pravin Narayanan, Krishna Pfister, Henry D Sprintson, Alex |
description | We consider a communication system where two transmitters wish to exchange information through a central relay. The transmitter and relay nodes exchange data over synchronized, average power constrained additive white Gaussian noise channels with a real input with signal-to-noise ratio (SNR) of snr. An upper bound on the capacity is 1/2 log(1 + snr) bits per transmitter per use of the multiple access phase and broadcast phase of the bidirectional relay channel. We show that, using lattice codes and lattice decoding, we can obtain a rate of 1/2 log(1/2 + snr) bits per transmitter, which is essentially optimal at high SNR. The main idea is to decode the sum of the codewords modulo a lattice at the relay followed by a broadcast phase which performs Slepian-Wolf coding. We also show that if the two transmitters use identical lattices with minimum angle decoding, we can achieve the same rate of 1/2 log(1/2 + snr). The proposed scheme can be thought of as a joint physical-layer network-layer code which outperforms other recently proposed analog network coding schemes. |
doi_str_mv | 10.1109/TIT.2010.2068750 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671342800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5605356</ieee_id><sourcerecordid>1671342800</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-696609f91fa73de951a3465ef04d2d73564c6a9d6069c4227be20bd3fc0007763</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWKt3wcsiCF62Tr43Ry1-VIqK1HOI2axG140mW2T_vSmtHjwNM_O8Q_IgdIhhgjGos8VsMSGQOwKikhy20AhzLkslONtGIwBclYqxahftpfSWW8YxGaHZbfBdXzy8Dslb0xZzM7hYTEPtu5fCdHVx5_rvEN9_R02IxYWvfXS296HLiUfXmiGv9tFOY9rkDjZ1jJ6uLhfTm3J-fz2bns9LywTuS6GEANUo3BhJa6c4NpQJ7hpgNakl5YJZYVQtQCjLCJHPjsBzTRsLAFIKOkan67ufMXwtXer1h0_Wta3pXFgmjYXElJEKIKPH_9C3sIz50UlXkB1xTmSGYA3ZGFKKrtGf0X-YOGgMeqVWZ7V6pVZv1ObIyeauSVlaE01nffrLEUo5ZnjFHa0575z7W3MBPH-T_gBOW39K</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>807505527</pqid></control><display><type>article</type><title>Joint Physical Layer Coding and Network Coding for Bidirectional Relaying</title><source>IEEE Xplore (Online service)</source><creator>Wilson, Makesh Pravin ; Narayanan, Krishna ; Pfister, Henry D ; Sprintson, Alex</creator><creatorcontrib>Wilson, Makesh Pravin ; Narayanan, Krishna ; Pfister, Henry D ; Sprintson, Alex</creatorcontrib><description>We consider a communication system where two transmitters wish to exchange information through a central relay. The transmitter and relay nodes exchange data over synchronized, average power constrained additive white Gaussian noise channels with a real input with signal-to-noise ratio (SNR) of snr. An upper bound on the capacity is 1/2 log(1 + snr) bits per transmitter per use of the multiple access phase and broadcast phase of the bidirectional relay channel. We show that, using lattice codes and lattice decoding, we can obtain a rate of 1/2 log(1/2 + snr) bits per transmitter, which is essentially optimal at high SNR. The main idea is to decode the sum of the codewords modulo a lattice at the relay followed by a broadcast phase which performs Slepian-Wolf coding. We also show that if the two transmitters use identical lattices with minimum angle decoding, we can achieve the same rate of 1/2 log(1/2 + snr). The proposed scheme can be thought of as a joint physical-layer network-layer code which outperforms other recently proposed analog network coding schemes.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2010.2068750</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Bi-directional relaying ; Bidirectional ; Channels ; Codes ; Coding ; Coding, codes ; Decoding ; Encoding ; Exact sciences and technology ; Exchange rates ; Information systems ; Information theory ; Information, signal and communications theory ; Lattices ; minimum angle decoding ; nested lattice decoding ; Networks ; Normal distribution ; Radiocommunications ; Relay ; Relays ; Signal and communications theory ; Signal to noise ratio ; Systems, networks and services of telecommunications ; Telecommunications ; Telecommunications and information theory ; Transmission and modulation (techniques and equipments) ; Transmitters ; Transmitters. Receivers ; Upper bound</subject><ispartof>IEEE transactions on information theory, 2010-11, Vol.56 (11), p.5641-5654</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-696609f91fa73de951a3465ef04d2d73564c6a9d6069c4227be20bd3fc0007763</citedby><cites>FETCH-LOGICAL-c461t-696609f91fa73de951a3465ef04d2d73564c6a9d6069c4227be20bd3fc0007763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5605356$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23351410$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wilson, Makesh Pravin</creatorcontrib><creatorcontrib>Narayanan, Krishna</creatorcontrib><creatorcontrib>Pfister, Henry D</creatorcontrib><creatorcontrib>Sprintson, Alex</creatorcontrib><title>Joint Physical Layer Coding and Network Coding for Bidirectional Relaying</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>We consider a communication system where two transmitters wish to exchange information through a central relay. The transmitter and relay nodes exchange data over synchronized, average power constrained additive white Gaussian noise channels with a real input with signal-to-noise ratio (SNR) of snr. An upper bound on the capacity is 1/2 log(1 + snr) bits per transmitter per use of the multiple access phase and broadcast phase of the bidirectional relay channel. We show that, using lattice codes and lattice decoding, we can obtain a rate of 1/2 log(1/2 + snr) bits per transmitter, which is essentially optimal at high SNR. The main idea is to decode the sum of the codewords modulo a lattice at the relay followed by a broadcast phase which performs Slepian-Wolf coding. We also show that if the two transmitters use identical lattices with minimum angle decoding, we can achieve the same rate of 1/2 log(1/2 + snr). The proposed scheme can be thought of as a joint physical-layer network-layer code which outperforms other recently proposed analog network coding schemes.</description><subject>Applied sciences</subject><subject>Bi-directional relaying</subject><subject>Bidirectional</subject><subject>Channels</subject><subject>Codes</subject><subject>Coding</subject><subject>Coding, codes</subject><subject>Decoding</subject><subject>Encoding</subject><subject>Exact sciences and technology</subject><subject>Exchange rates</subject><subject>Information systems</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>Lattices</subject><subject>minimum angle decoding</subject><subject>nested lattice decoding</subject><subject>Networks</subject><subject>Normal distribution</subject><subject>Radiocommunications</subject><subject>Relay</subject><subject>Relays</subject><subject>Signal and communications theory</subject><subject>Signal to noise ratio</subject><subject>Systems, networks and services of telecommunications</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Transmission and modulation (techniques and equipments)</subject><subject>Transmitters</subject><subject>Transmitters. Receivers</subject><subject>Upper bound</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LAzEQhoMoWKt3wcsiCF62Tr43Ry1-VIqK1HOI2axG140mW2T_vSmtHjwNM_O8Q_IgdIhhgjGos8VsMSGQOwKikhy20AhzLkslONtGIwBclYqxahftpfSWW8YxGaHZbfBdXzy8Dslb0xZzM7hYTEPtu5fCdHVx5_rvEN9_R02IxYWvfXS296HLiUfXmiGv9tFOY9rkDjZ1jJ6uLhfTm3J-fz2bns9LywTuS6GEANUo3BhJa6c4NpQJ7hpgNakl5YJZYVQtQCjLCJHPjsBzTRsLAFIKOkan67ufMXwtXer1h0_Wta3pXFgmjYXElJEKIKPH_9C3sIz50UlXkB1xTmSGYA3ZGFKKrtGf0X-YOGgMeqVWZ7V6pVZv1ObIyeauSVlaE01nffrLEUo5ZnjFHa0575z7W3MBPH-T_gBOW39K</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Wilson, Makesh Pravin</creator><creator>Narayanan, Krishna</creator><creator>Pfister, Henry D</creator><creator>Sprintson, Alex</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20101101</creationdate><title>Joint Physical Layer Coding and Network Coding for Bidirectional Relaying</title><author>Wilson, Makesh Pravin ; Narayanan, Krishna ; Pfister, Henry D ; Sprintson, Alex</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-696609f91fa73de951a3465ef04d2d73564c6a9d6069c4227be20bd3fc0007763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Bi-directional relaying</topic><topic>Bidirectional</topic><topic>Channels</topic><topic>Codes</topic><topic>Coding</topic><topic>Coding, codes</topic><topic>Decoding</topic><topic>Encoding</topic><topic>Exact sciences and technology</topic><topic>Exchange rates</topic><topic>Information systems</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>Lattices</topic><topic>minimum angle decoding</topic><topic>nested lattice decoding</topic><topic>Networks</topic><topic>Normal distribution</topic><topic>Radiocommunications</topic><topic>Relay</topic><topic>Relays</topic><topic>Signal and communications theory</topic><topic>Signal to noise ratio</topic><topic>Systems, networks and services of telecommunications</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Transmission and modulation (techniques and equipments)</topic><topic>Transmitters</topic><topic>Transmitters. Receivers</topic><topic>Upper bound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilson, Makesh Pravin</creatorcontrib><creatorcontrib>Narayanan, Krishna</creatorcontrib><creatorcontrib>Pfister, Henry D</creatorcontrib><creatorcontrib>Sprintson, Alex</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilson, Makesh Pravin</au><au>Narayanan, Krishna</au><au>Pfister, Henry D</au><au>Sprintson, Alex</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint Physical Layer Coding and Network Coding for Bidirectional Relaying</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2010-11-01</date><risdate>2010</risdate><volume>56</volume><issue>11</issue><spage>5641</spage><epage>5654</epage><pages>5641-5654</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>We consider a communication system where two transmitters wish to exchange information through a central relay. The transmitter and relay nodes exchange data over synchronized, average power constrained additive white Gaussian noise channels with a real input with signal-to-noise ratio (SNR) of snr. An upper bound on the capacity is 1/2 log(1 + snr) bits per transmitter per use of the multiple access phase and broadcast phase of the bidirectional relay channel. We show that, using lattice codes and lattice decoding, we can obtain a rate of 1/2 log(1/2 + snr) bits per transmitter, which is essentially optimal at high SNR. The main idea is to decode the sum of the codewords modulo a lattice at the relay followed by a broadcast phase which performs Slepian-Wolf coding. We also show that if the two transmitters use identical lattices with minimum angle decoding, we can achieve the same rate of 1/2 log(1/2 + snr). The proposed scheme can be thought of as a joint physical-layer network-layer code which outperforms other recently proposed analog network coding schemes.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TIT.2010.2068750</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2010-11, Vol.56 (11), p.5641-5654 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671342800 |
source | IEEE Xplore (Online service) |
subjects | Applied sciences Bi-directional relaying Bidirectional Channels Codes Coding Coding, codes Decoding Encoding Exact sciences and technology Exchange rates Information systems Information theory Information, signal and communications theory Lattices minimum angle decoding nested lattice decoding Networks Normal distribution Radiocommunications Relay Relays Signal and communications theory Signal to noise ratio Systems, networks and services of telecommunications Telecommunications Telecommunications and information theory Transmission and modulation (techniques and equipments) Transmitters Transmitters. Receivers Upper bound |
title | Joint Physical Layer Coding and Network Coding for Bidirectional Relaying |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A24%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20Physical%20Layer%20Coding%20and%20Network%20Coding%20for%20Bidirectional%20Relaying&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Wilson,%20Makesh%20Pravin&rft.date=2010-11-01&rft.volume=56&rft.issue=11&rft.spage=5641&rft.epage=5654&rft.pages=5641-5654&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2010.2068750&rft_dat=%3Cproquest_pasca%3E1671342800%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c461t-696609f91fa73de951a3465ef04d2d73564c6a9d6069c4227be20bd3fc0007763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=807505527&rft_id=info:pmid/&rft_ieee_id=5605356&rfr_iscdi=true |