Loading…

Joint Physical Layer Coding and Network Coding for Bidirectional Relaying

We consider a communication system where two transmitters wish to exchange information through a central relay. The transmitter and relay nodes exchange data over synchronized, average power constrained additive white Gaussian noise channels with a real input with signal-to-noise ratio (SNR) of snr....

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information theory 2010-11, Vol.56 (11), p.5641-5654
Main Authors: Wilson, Makesh Pravin, Narayanan, Krishna, Pfister, Henry D, Sprintson, Alex
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c461t-696609f91fa73de951a3465ef04d2d73564c6a9d6069c4227be20bd3fc0007763
cites cdi_FETCH-LOGICAL-c461t-696609f91fa73de951a3465ef04d2d73564c6a9d6069c4227be20bd3fc0007763
container_end_page 5654
container_issue 11
container_start_page 5641
container_title IEEE transactions on information theory
container_volume 56
creator Wilson, Makesh Pravin
Narayanan, Krishna
Pfister, Henry D
Sprintson, Alex
description We consider a communication system where two transmitters wish to exchange information through a central relay. The transmitter and relay nodes exchange data over synchronized, average power constrained additive white Gaussian noise channels with a real input with signal-to-noise ratio (SNR) of snr. An upper bound on the capacity is 1/2 log(1 + snr) bits per transmitter per use of the multiple access phase and broadcast phase of the bidirectional relay channel. We show that, using lattice codes and lattice decoding, we can obtain a rate of 1/2 log(1/2 + snr) bits per transmitter, which is essentially optimal at high SNR. The main idea is to decode the sum of the codewords modulo a lattice at the relay followed by a broadcast phase which performs Slepian-Wolf coding. We also show that if the two transmitters use identical lattices with minimum angle decoding, we can achieve the same rate of 1/2 log(1/2 + snr). The proposed scheme can be thought of as a joint physical-layer network-layer code which outperforms other recently proposed analog network coding schemes.
doi_str_mv 10.1109/TIT.2010.2068750
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671342800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5605356</ieee_id><sourcerecordid>1671342800</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-696609f91fa73de951a3465ef04d2d73564c6a9d6069c4227be20bd3fc0007763</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWKt3wcsiCF62Tr43Ry1-VIqK1HOI2axG140mW2T_vSmtHjwNM_O8Q_IgdIhhgjGos8VsMSGQOwKikhy20AhzLkslONtGIwBclYqxahftpfSWW8YxGaHZbfBdXzy8Dslb0xZzM7hYTEPtu5fCdHVx5_rvEN9_R02IxYWvfXS296HLiUfXmiGv9tFOY9rkDjZ1jJ6uLhfTm3J-fz2bns9LywTuS6GEANUo3BhJa6c4NpQJ7hpgNakl5YJZYVQtQCjLCJHPjsBzTRsLAFIKOkan67ufMXwtXer1h0_Wta3pXFgmjYXElJEKIKPH_9C3sIz50UlXkB1xTmSGYA3ZGFKKrtGf0X-YOGgMeqVWZ7V6pVZv1ObIyeauSVlaE01nffrLEUo5ZnjFHa0575z7W3MBPH-T_gBOW39K</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>807505527</pqid></control><display><type>article</type><title>Joint Physical Layer Coding and Network Coding for Bidirectional Relaying</title><source>IEEE Xplore (Online service)</source><creator>Wilson, Makesh Pravin ; Narayanan, Krishna ; Pfister, Henry D ; Sprintson, Alex</creator><creatorcontrib>Wilson, Makesh Pravin ; Narayanan, Krishna ; Pfister, Henry D ; Sprintson, Alex</creatorcontrib><description>We consider a communication system where two transmitters wish to exchange information through a central relay. The transmitter and relay nodes exchange data over synchronized, average power constrained additive white Gaussian noise channels with a real input with signal-to-noise ratio (SNR) of snr. An upper bound on the capacity is 1/2 log(1 + snr) bits per transmitter per use of the multiple access phase and broadcast phase of the bidirectional relay channel. We show that, using lattice codes and lattice decoding, we can obtain a rate of 1/2 log(1/2 + snr) bits per transmitter, which is essentially optimal at high SNR. The main idea is to decode the sum of the codewords modulo a lattice at the relay followed by a broadcast phase which performs Slepian-Wolf coding. We also show that if the two transmitters use identical lattices with minimum angle decoding, we can achieve the same rate of 1/2 log(1/2 + snr). The proposed scheme can be thought of as a joint physical-layer network-layer code which outperforms other recently proposed analog network coding schemes.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2010.2068750</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Bi-directional relaying ; Bidirectional ; Channels ; Codes ; Coding ; Coding, codes ; Decoding ; Encoding ; Exact sciences and technology ; Exchange rates ; Information systems ; Information theory ; Information, signal and communications theory ; Lattices ; minimum angle decoding ; nested lattice decoding ; Networks ; Normal distribution ; Radiocommunications ; Relay ; Relays ; Signal and communications theory ; Signal to noise ratio ; Systems, networks and services of telecommunications ; Telecommunications ; Telecommunications and information theory ; Transmission and modulation (techniques and equipments) ; Transmitters ; Transmitters. Receivers ; Upper bound</subject><ispartof>IEEE transactions on information theory, 2010-11, Vol.56 (11), p.5641-5654</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-696609f91fa73de951a3465ef04d2d73564c6a9d6069c4227be20bd3fc0007763</citedby><cites>FETCH-LOGICAL-c461t-696609f91fa73de951a3465ef04d2d73564c6a9d6069c4227be20bd3fc0007763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5605356$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23351410$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wilson, Makesh Pravin</creatorcontrib><creatorcontrib>Narayanan, Krishna</creatorcontrib><creatorcontrib>Pfister, Henry D</creatorcontrib><creatorcontrib>Sprintson, Alex</creatorcontrib><title>Joint Physical Layer Coding and Network Coding for Bidirectional Relaying</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>We consider a communication system where two transmitters wish to exchange information through a central relay. The transmitter and relay nodes exchange data over synchronized, average power constrained additive white Gaussian noise channels with a real input with signal-to-noise ratio (SNR) of snr. An upper bound on the capacity is 1/2 log(1 + snr) bits per transmitter per use of the multiple access phase and broadcast phase of the bidirectional relay channel. We show that, using lattice codes and lattice decoding, we can obtain a rate of 1/2 log(1/2 + snr) bits per transmitter, which is essentially optimal at high SNR. The main idea is to decode the sum of the codewords modulo a lattice at the relay followed by a broadcast phase which performs Slepian-Wolf coding. We also show that if the two transmitters use identical lattices with minimum angle decoding, we can achieve the same rate of 1/2 log(1/2 + snr). The proposed scheme can be thought of as a joint physical-layer network-layer code which outperforms other recently proposed analog network coding schemes.</description><subject>Applied sciences</subject><subject>Bi-directional relaying</subject><subject>Bidirectional</subject><subject>Channels</subject><subject>Codes</subject><subject>Coding</subject><subject>Coding, codes</subject><subject>Decoding</subject><subject>Encoding</subject><subject>Exact sciences and technology</subject><subject>Exchange rates</subject><subject>Information systems</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>Lattices</subject><subject>minimum angle decoding</subject><subject>nested lattice decoding</subject><subject>Networks</subject><subject>Normal distribution</subject><subject>Radiocommunications</subject><subject>Relay</subject><subject>Relays</subject><subject>Signal and communications theory</subject><subject>Signal to noise ratio</subject><subject>Systems, networks and services of telecommunications</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Transmission and modulation (techniques and equipments)</subject><subject>Transmitters</subject><subject>Transmitters. Receivers</subject><subject>Upper bound</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LAzEQhoMoWKt3wcsiCF62Tr43Ry1-VIqK1HOI2axG140mW2T_vSmtHjwNM_O8Q_IgdIhhgjGos8VsMSGQOwKikhy20AhzLkslONtGIwBclYqxahftpfSWW8YxGaHZbfBdXzy8Dslb0xZzM7hYTEPtu5fCdHVx5_rvEN9_R02IxYWvfXS296HLiUfXmiGv9tFOY9rkDjZ1jJ6uLhfTm3J-fz2bns9LywTuS6GEANUo3BhJa6c4NpQJ7hpgNakl5YJZYVQtQCjLCJHPjsBzTRsLAFIKOkan67ufMXwtXer1h0_Wta3pXFgmjYXElJEKIKPH_9C3sIz50UlXkB1xTmSGYA3ZGFKKrtGf0X-YOGgMeqVWZ7V6pVZv1ObIyeauSVlaE01nffrLEUo5ZnjFHa0575z7W3MBPH-T_gBOW39K</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Wilson, Makesh Pravin</creator><creator>Narayanan, Krishna</creator><creator>Pfister, Henry D</creator><creator>Sprintson, Alex</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20101101</creationdate><title>Joint Physical Layer Coding and Network Coding for Bidirectional Relaying</title><author>Wilson, Makesh Pravin ; Narayanan, Krishna ; Pfister, Henry D ; Sprintson, Alex</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-696609f91fa73de951a3465ef04d2d73564c6a9d6069c4227be20bd3fc0007763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Bi-directional relaying</topic><topic>Bidirectional</topic><topic>Channels</topic><topic>Codes</topic><topic>Coding</topic><topic>Coding, codes</topic><topic>Decoding</topic><topic>Encoding</topic><topic>Exact sciences and technology</topic><topic>Exchange rates</topic><topic>Information systems</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>Lattices</topic><topic>minimum angle decoding</topic><topic>nested lattice decoding</topic><topic>Networks</topic><topic>Normal distribution</topic><topic>Radiocommunications</topic><topic>Relay</topic><topic>Relays</topic><topic>Signal and communications theory</topic><topic>Signal to noise ratio</topic><topic>Systems, networks and services of telecommunications</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Transmission and modulation (techniques and equipments)</topic><topic>Transmitters</topic><topic>Transmitters. Receivers</topic><topic>Upper bound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilson, Makesh Pravin</creatorcontrib><creatorcontrib>Narayanan, Krishna</creatorcontrib><creatorcontrib>Pfister, Henry D</creatorcontrib><creatorcontrib>Sprintson, Alex</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilson, Makesh Pravin</au><au>Narayanan, Krishna</au><au>Pfister, Henry D</au><au>Sprintson, Alex</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint Physical Layer Coding and Network Coding for Bidirectional Relaying</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2010-11-01</date><risdate>2010</risdate><volume>56</volume><issue>11</issue><spage>5641</spage><epage>5654</epage><pages>5641-5654</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>We consider a communication system where two transmitters wish to exchange information through a central relay. The transmitter and relay nodes exchange data over synchronized, average power constrained additive white Gaussian noise channels with a real input with signal-to-noise ratio (SNR) of snr. An upper bound on the capacity is 1/2 log(1 + snr) bits per transmitter per use of the multiple access phase and broadcast phase of the bidirectional relay channel. We show that, using lattice codes and lattice decoding, we can obtain a rate of 1/2 log(1/2 + snr) bits per transmitter, which is essentially optimal at high SNR. The main idea is to decode the sum of the codewords modulo a lattice at the relay followed by a broadcast phase which performs Slepian-Wolf coding. We also show that if the two transmitters use identical lattices with minimum angle decoding, we can achieve the same rate of 1/2 log(1/2 + snr). The proposed scheme can be thought of as a joint physical-layer network-layer code which outperforms other recently proposed analog network coding schemes.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TIT.2010.2068750</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2010-11, Vol.56 (11), p.5641-5654
issn 0018-9448
1557-9654
language eng
recordid cdi_proquest_miscellaneous_1671342800
source IEEE Xplore (Online service)
subjects Applied sciences
Bi-directional relaying
Bidirectional
Channels
Codes
Coding
Coding, codes
Decoding
Encoding
Exact sciences and technology
Exchange rates
Information systems
Information theory
Information, signal and communications theory
Lattices
minimum angle decoding
nested lattice decoding
Networks
Normal distribution
Radiocommunications
Relay
Relays
Signal and communications theory
Signal to noise ratio
Systems, networks and services of telecommunications
Telecommunications
Telecommunications and information theory
Transmission and modulation (techniques and equipments)
Transmitters
Transmitters. Receivers
Upper bound
title Joint Physical Layer Coding and Network Coding for Bidirectional Relaying
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A24%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20Physical%20Layer%20Coding%20and%20Network%20Coding%20for%20Bidirectional%20Relaying&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Wilson,%20Makesh%20Pravin&rft.date=2010-11-01&rft.volume=56&rft.issue=11&rft.spage=5641&rft.epage=5654&rft.pages=5641-5654&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2010.2068750&rft_dat=%3Cproquest_pasca%3E1671342800%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c461t-696609f91fa73de951a3465ef04d2d73564c6a9d6069c4227be20bd3fc0007763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=807505527&rft_id=info:pmid/&rft_ieee_id=5605356&rfr_iscdi=true