Loading…

In-Situ Fracture Observation and Fracture Toughness Analysis of Ni-Mn-Ga-Fe Ferromagnetic Shape Memory Alloys

The fracture property improvement of Ni-Mn-Ga-Fe ferromagnetic shape memory alloys containing ductile γ particles was explained by direct observation of microfracture processes using an in-situ loading stage installed inside a scanning electron microscope (SEM) chamber. The Ni-Mn-Ga-Fe alloys contai...

Full description

Saved in:
Bibliographic Details
Published in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2011-12, Vol.42 (13), p.3961-3968
Main Authors: Euh, Kwangjun, Lee, Jung-Moo, Nam, Duk-Hyun, Lee, Sunghak
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c421t-a1bf50e2a380357bc61bce57e2655356f72ebbebc61b2e960541cfac3e96cc7f3
cites cdi_FETCH-LOGICAL-c421t-a1bf50e2a380357bc61bce57e2655356f72ebbebc61b2e960541cfac3e96cc7f3
container_end_page 3968
container_issue 13
container_start_page 3961
container_title Metallurgical and materials transactions. A, Physical metallurgy and materials science
container_volume 42
creator Euh, Kwangjun
Lee, Jung-Moo
Nam, Duk-Hyun
Lee, Sunghak
description The fracture property improvement of Ni-Mn-Ga-Fe ferromagnetic shape memory alloys containing ductile γ particles was explained by direct observation of microfracture processes using an in-situ loading stage installed inside a scanning electron microscope (SEM) chamber. The Ni-Mn-Ga-Fe alloys contained a considerable amount of γ particles in β grains after the homogenization treatment at 1073 K to 1373 K (800 °C to 1100 °C). With increasing homogenization temperature, γ particles were coarsened and distributed homogeneously along β grain boundaries as well as inside β grains. According to the in-situ microfracture observation, γ particles effectively acted as blocking sites of crack propagation and provided the stable crack growth, which could be confirmed by the R -curve analysis. The increase in fracture resistance with increasing crack length improved overall fracture properties of the Ni-Mn-Ga-Fe alloys. This improvement could be explained by mechanisms of blocking of crack propagation and crack blunting and bridging.
doi_str_mv 10.1007/s11661-011-0804-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671344459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671344459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-a1bf50e2a380357bc61bce57e2655356f72ebbebc61b2e960541cfac3e96cc7f3</originalsourceid><addsrcrecordid>eNp1kVFLHTEQhYO0oL3tD_AtCEJf0k6STdZ9vIjXCloftM8hG2evK7vJNbMr7L9v7JUKhT6EDHO-OUxOGDuW8E0C1N9JSmulAFnOGVRiOWBH0lRayKaCD6WGWgtjlT5kn4ieAEA22h6x8SqKu36a-Sb7MM0Z-W1LmF_81KfIfXx4F-7TvH2MSMTX0Q8L9cRTx3_24iaKSy82yDeYcxr9NuLUB3736HfIb3BMeeHrYUgLfWYfOz8Qfnm7V-zX5uL-_Ie4vr28Ol9fi1ApOQkv284AKq_PQJu6DVa2AU2Nyhqjje1qhW2Lf_oKGwumkqHzQZc6hLrTK_Z177vL6XlGmtzYU8Bh8BHTTE7aWuqqqkxT0JN_0Kc05_JAcg0YaJQFKJDcQyEnooyd2-V-9HlxEtxr_m6fvyv5u9f83VJmTt-MPQU_dNnH0NPfQWU0GFU-ZMXUnqMixS3m9wX-b_4biy2VhA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>905092600</pqid></control><display><type>article</type><title>In-Situ Fracture Observation and Fracture Toughness Analysis of Ni-Mn-Ga-Fe Ferromagnetic Shape Memory Alloys</title><source>Springer Nature</source><creator>Euh, Kwangjun ; Lee, Jung-Moo ; Nam, Duk-Hyun ; Lee, Sunghak</creator><creatorcontrib>Euh, Kwangjun ; Lee, Jung-Moo ; Nam, Duk-Hyun ; Lee, Sunghak</creatorcontrib><description>The fracture property improvement of Ni-Mn-Ga-Fe ferromagnetic shape memory alloys containing ductile γ particles was explained by direct observation of microfracture processes using an in-situ loading stage installed inside a scanning electron microscope (SEM) chamber. The Ni-Mn-Ga-Fe alloys contained a considerable amount of γ particles in β grains after the homogenization treatment at 1073 K to 1373 K (800 °C to 1100 °C). With increasing homogenization temperature, γ particles were coarsened and distributed homogeneously along β grain boundaries as well as inside β grains. According to the in-situ microfracture observation, γ particles effectively acted as blocking sites of crack propagation and provided the stable crack growth, which could be confirmed by the R -curve analysis. The increase in fracture resistance with increasing crack length improved overall fracture properties of the Ni-Mn-Ga-Fe alloys. This improvement could be explained by mechanisms of blocking of crack propagation and crack blunting and bridging.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-011-0804-y</identifier><identifier>CODEN: MMTAEB</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Alloys ; Applied sciences ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Crack propagation ; Exact sciences and technology ; Ferroelectrics ; Ferromagnetism ; Fracture mechanics ; Fracture toughness ; Fractures ; Homogenizing ; Magnetism ; Materials Science ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metallic Materials ; Metals. Metallurgy ; Nanotechnology ; Nickel ; Nickel base alloys ; Scanning electron microscopy ; Structural Materials ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2011-12, Vol.42 (13), p.3961-3968</ispartof><rights>The Minerals, Metals &amp; Materials Society and ASM International 2011</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-a1bf50e2a380357bc61bce57e2655356f72ebbebc61b2e960541cfac3e96cc7f3</citedby><cites>FETCH-LOGICAL-c421t-a1bf50e2a380357bc61bce57e2655356f72ebbebc61b2e960541cfac3e96cc7f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25305262$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Euh, Kwangjun</creatorcontrib><creatorcontrib>Lee, Jung-Moo</creatorcontrib><creatorcontrib>Nam, Duk-Hyun</creatorcontrib><creatorcontrib>Lee, Sunghak</creatorcontrib><title>In-Situ Fracture Observation and Fracture Toughness Analysis of Ni-Mn-Ga-Fe Ferromagnetic Shape Memory Alloys</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>The fracture property improvement of Ni-Mn-Ga-Fe ferromagnetic shape memory alloys containing ductile γ particles was explained by direct observation of microfracture processes using an in-situ loading stage installed inside a scanning electron microscope (SEM) chamber. The Ni-Mn-Ga-Fe alloys contained a considerable amount of γ particles in β grains after the homogenization treatment at 1073 K to 1373 K (800 °C to 1100 °C). With increasing homogenization temperature, γ particles were coarsened and distributed homogeneously along β grain boundaries as well as inside β grains. According to the in-situ microfracture observation, γ particles effectively acted as blocking sites of crack propagation and provided the stable crack growth, which could be confirmed by the R -curve analysis. The increase in fracture resistance with increasing crack length improved overall fracture properties of the Ni-Mn-Ga-Fe alloys. This improvement could be explained by mechanisms of blocking of crack propagation and crack blunting and bridging.</description><subject>Alloys</subject><subject>Applied sciences</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Crack propagation</subject><subject>Exact sciences and technology</subject><subject>Ferroelectrics</subject><subject>Ferromagnetism</subject><subject>Fracture mechanics</subject><subject>Fracture toughness</subject><subject>Fractures</subject><subject>Homogenizing</subject><subject>Magnetism</subject><subject>Materials Science</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metallic Materials</subject><subject>Metals. Metallurgy</subject><subject>Nanotechnology</subject><subject>Nickel</subject><subject>Nickel base alloys</subject><subject>Scanning electron microscopy</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kVFLHTEQhYO0oL3tD_AtCEJf0k6STdZ9vIjXCloftM8hG2evK7vJNbMr7L9v7JUKhT6EDHO-OUxOGDuW8E0C1N9JSmulAFnOGVRiOWBH0lRayKaCD6WGWgtjlT5kn4ieAEA22h6x8SqKu36a-Sb7MM0Z-W1LmF_81KfIfXx4F-7TvH2MSMTX0Q8L9cRTx3_24iaKSy82yDeYcxr9NuLUB3736HfIb3BMeeHrYUgLfWYfOz8Qfnm7V-zX5uL-_Ie4vr28Ol9fi1ApOQkv284AKq_PQJu6DVa2AU2Nyhqjje1qhW2Lf_oKGwumkqHzQZc6hLrTK_Z177vL6XlGmtzYU8Bh8BHTTE7aWuqqqkxT0JN_0Kc05_JAcg0YaJQFKJDcQyEnooyd2-V-9HlxEtxr_m6fvyv5u9f83VJmTt-MPQU_dNnH0NPfQWU0GFU-ZMXUnqMixS3m9wX-b_4biy2VhA</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Euh, Kwangjun</creator><creator>Lee, Jung-Moo</creator><creator>Nam, Duk-Hyun</creator><creator>Lee, Sunghak</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20111201</creationdate><title>In-Situ Fracture Observation and Fracture Toughness Analysis of Ni-Mn-Ga-Fe Ferromagnetic Shape Memory Alloys</title><author>Euh, Kwangjun ; Lee, Jung-Moo ; Nam, Duk-Hyun ; Lee, Sunghak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-a1bf50e2a380357bc61bce57e2655356f72ebbebc61b2e960541cfac3e96cc7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Alloys</topic><topic>Applied sciences</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Crack propagation</topic><topic>Exact sciences and technology</topic><topic>Ferroelectrics</topic><topic>Ferromagnetism</topic><topic>Fracture mechanics</topic><topic>Fracture toughness</topic><topic>Fractures</topic><topic>Homogenizing</topic><topic>Magnetism</topic><topic>Materials Science</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metallic Materials</topic><topic>Metals. Metallurgy</topic><topic>Nanotechnology</topic><topic>Nickel</topic><topic>Nickel base alloys</topic><topic>Scanning electron microscopy</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Euh, Kwangjun</creatorcontrib><creatorcontrib>Lee, Jung-Moo</creatorcontrib><creatorcontrib>Nam, Duk-Hyun</creatorcontrib><creatorcontrib>Lee, Sunghak</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Euh, Kwangjun</au><au>Lee, Jung-Moo</au><au>Nam, Duk-Hyun</au><au>Lee, Sunghak</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-Situ Fracture Observation and Fracture Toughness Analysis of Ni-Mn-Ga-Fe Ferromagnetic Shape Memory Alloys</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2011-12-01</date><risdate>2011</risdate><volume>42</volume><issue>13</issue><spage>3961</spage><epage>3968</epage><pages>3961-3968</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><coden>MMTAEB</coden><abstract>The fracture property improvement of Ni-Mn-Ga-Fe ferromagnetic shape memory alloys containing ductile γ particles was explained by direct observation of microfracture processes using an in-situ loading stage installed inside a scanning electron microscope (SEM) chamber. The Ni-Mn-Ga-Fe alloys contained a considerable amount of γ particles in β grains after the homogenization treatment at 1073 K to 1373 K (800 °C to 1100 °C). With increasing homogenization temperature, γ particles were coarsened and distributed homogeneously along β grain boundaries as well as inside β grains. According to the in-situ microfracture observation, γ particles effectively acted as blocking sites of crack propagation and provided the stable crack growth, which could be confirmed by the R -curve analysis. The increase in fracture resistance with increasing crack length improved overall fracture properties of the Ni-Mn-Ga-Fe alloys. This improvement could be explained by mechanisms of blocking of crack propagation and crack blunting and bridging.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11661-011-0804-y</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1073-5623
ispartof Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2011-12, Vol.42 (13), p.3961-3968
issn 1073-5623
1543-1940
language eng
recordid cdi_proquest_miscellaneous_1671344459
source Springer Nature
subjects Alloys
Applied sciences
Characterization and Evaluation of Materials
Chemistry and Materials Science
Crack propagation
Exact sciences and technology
Ferroelectrics
Ferromagnetism
Fracture mechanics
Fracture toughness
Fractures
Homogenizing
Magnetism
Materials Science
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Metallic Materials
Metals. Metallurgy
Nanotechnology
Nickel
Nickel base alloys
Scanning electron microscopy
Structural Materials
Surfaces and Interfaces
Thin Films
title In-Situ Fracture Observation and Fracture Toughness Analysis of Ni-Mn-Ga-Fe Ferromagnetic Shape Memory Alloys
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T17%3A37%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-Situ%20Fracture%20Observation%20and%20Fracture%20Toughness%20Analysis%20of%20Ni-Mn-Ga-Fe%20Ferromagnetic%20Shape%20Memory%20Alloys&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Euh,%20Kwangjun&rft.date=2011-12-01&rft.volume=42&rft.issue=13&rft.spage=3961&rft.epage=3968&rft.pages=3961-3968&rft.issn=1073-5623&rft.eissn=1543-1940&rft.coden=MMTAEB&rft_id=info:doi/10.1007/s11661-011-0804-y&rft_dat=%3Cproquest_cross%3E1671344459%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c421t-a1bf50e2a380357bc61bce57e2655356f72ebbebc61b2e960541cfac3e96cc7f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=905092600&rft_id=info:pmid/&rfr_iscdi=true