Loading…
In-Situ Fracture Observation and Fracture Toughness Analysis of Ni-Mn-Ga-Fe Ferromagnetic Shape Memory Alloys
The fracture property improvement of Ni-Mn-Ga-Fe ferromagnetic shape memory alloys containing ductile γ particles was explained by direct observation of microfracture processes using an in-situ loading stage installed inside a scanning electron microscope (SEM) chamber. The Ni-Mn-Ga-Fe alloys contai...
Saved in:
Published in: | Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2011-12, Vol.42 (13), p.3961-3968 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c421t-a1bf50e2a380357bc61bce57e2655356f72ebbebc61b2e960541cfac3e96cc7f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c421t-a1bf50e2a380357bc61bce57e2655356f72ebbebc61b2e960541cfac3e96cc7f3 |
container_end_page | 3968 |
container_issue | 13 |
container_start_page | 3961 |
container_title | Metallurgical and materials transactions. A, Physical metallurgy and materials science |
container_volume | 42 |
creator | Euh, Kwangjun Lee, Jung-Moo Nam, Duk-Hyun Lee, Sunghak |
description | The fracture property improvement of Ni-Mn-Ga-Fe ferromagnetic shape memory alloys containing ductile
γ
particles was explained by direct observation of microfracture processes using an
in-situ
loading stage installed inside a scanning electron microscope (SEM) chamber. The Ni-Mn-Ga-Fe alloys contained a considerable amount of
γ
particles in
β
grains after the homogenization treatment at 1073 K to 1373 K (800 °C to 1100 °C). With increasing homogenization temperature,
γ
particles were coarsened and distributed homogeneously along
β
grain boundaries as well as inside
β
grains. According to the
in-situ
microfracture observation,
γ
particles effectively acted as blocking sites of crack propagation and provided the stable crack growth, which could be confirmed by the
R
-curve analysis. The increase in fracture resistance with increasing crack length improved overall fracture properties of the Ni-Mn-Ga-Fe alloys. This improvement could be explained by mechanisms of blocking of crack propagation and crack blunting and bridging. |
doi_str_mv | 10.1007/s11661-011-0804-y |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671344459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671344459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-a1bf50e2a380357bc61bce57e2655356f72ebbebc61b2e960541cfac3e96cc7f3</originalsourceid><addsrcrecordid>eNp1kVFLHTEQhYO0oL3tD_AtCEJf0k6STdZ9vIjXCloftM8hG2evK7vJNbMr7L9v7JUKhT6EDHO-OUxOGDuW8E0C1N9JSmulAFnOGVRiOWBH0lRayKaCD6WGWgtjlT5kn4ieAEA22h6x8SqKu36a-Sb7MM0Z-W1LmF_81KfIfXx4F-7TvH2MSMTX0Q8L9cRTx3_24iaKSy82yDeYcxr9NuLUB3736HfIb3BMeeHrYUgLfWYfOz8Qfnm7V-zX5uL-_Ie4vr28Ol9fi1ApOQkv284AKq_PQJu6DVa2AU2Nyhqjje1qhW2Lf_oKGwumkqHzQZc6hLrTK_Z177vL6XlGmtzYU8Bh8BHTTE7aWuqqqkxT0JN_0Kc05_JAcg0YaJQFKJDcQyEnooyd2-V-9HlxEtxr_m6fvyv5u9f83VJmTt-MPQU_dNnH0NPfQWU0GFU-ZMXUnqMixS3m9wX-b_4biy2VhA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>905092600</pqid></control><display><type>article</type><title>In-Situ Fracture Observation and Fracture Toughness Analysis of Ni-Mn-Ga-Fe Ferromagnetic Shape Memory Alloys</title><source>Springer Nature</source><creator>Euh, Kwangjun ; Lee, Jung-Moo ; Nam, Duk-Hyun ; Lee, Sunghak</creator><creatorcontrib>Euh, Kwangjun ; Lee, Jung-Moo ; Nam, Duk-Hyun ; Lee, Sunghak</creatorcontrib><description>The fracture property improvement of Ni-Mn-Ga-Fe ferromagnetic shape memory alloys containing ductile
γ
particles was explained by direct observation of microfracture processes using an
in-situ
loading stage installed inside a scanning electron microscope (SEM) chamber. The Ni-Mn-Ga-Fe alloys contained a considerable amount of
γ
particles in
β
grains after the homogenization treatment at 1073 K to 1373 K (800 °C to 1100 °C). With increasing homogenization temperature,
γ
particles were coarsened and distributed homogeneously along
β
grain boundaries as well as inside
β
grains. According to the
in-situ
microfracture observation,
γ
particles effectively acted as blocking sites of crack propagation and provided the stable crack growth, which could be confirmed by the
R
-curve analysis. The increase in fracture resistance with increasing crack length improved overall fracture properties of the Ni-Mn-Ga-Fe alloys. This improvement could be explained by mechanisms of blocking of crack propagation and crack blunting and bridging.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-011-0804-y</identifier><identifier>CODEN: MMTAEB</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Alloys ; Applied sciences ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Crack propagation ; Exact sciences and technology ; Ferroelectrics ; Ferromagnetism ; Fracture mechanics ; Fracture toughness ; Fractures ; Homogenizing ; Magnetism ; Materials Science ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metallic Materials ; Metals. Metallurgy ; Nanotechnology ; Nickel ; Nickel base alloys ; Scanning electron microscopy ; Structural Materials ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2011-12, Vol.42 (13), p.3961-3968</ispartof><rights>The Minerals, Metals & Materials Society and ASM International 2011</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-a1bf50e2a380357bc61bce57e2655356f72ebbebc61b2e960541cfac3e96cc7f3</citedby><cites>FETCH-LOGICAL-c421t-a1bf50e2a380357bc61bce57e2655356f72ebbebc61b2e960541cfac3e96cc7f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25305262$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Euh, Kwangjun</creatorcontrib><creatorcontrib>Lee, Jung-Moo</creatorcontrib><creatorcontrib>Nam, Duk-Hyun</creatorcontrib><creatorcontrib>Lee, Sunghak</creatorcontrib><title>In-Situ Fracture Observation and Fracture Toughness Analysis of Ni-Mn-Ga-Fe Ferromagnetic Shape Memory Alloys</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>The fracture property improvement of Ni-Mn-Ga-Fe ferromagnetic shape memory alloys containing ductile
γ
particles was explained by direct observation of microfracture processes using an
in-situ
loading stage installed inside a scanning electron microscope (SEM) chamber. The Ni-Mn-Ga-Fe alloys contained a considerable amount of
γ
particles in
β
grains after the homogenization treatment at 1073 K to 1373 K (800 °C to 1100 °C). With increasing homogenization temperature,
γ
particles were coarsened and distributed homogeneously along
β
grain boundaries as well as inside
β
grains. According to the
in-situ
microfracture observation,
γ
particles effectively acted as blocking sites of crack propagation and provided the stable crack growth, which could be confirmed by the
R
-curve analysis. The increase in fracture resistance with increasing crack length improved overall fracture properties of the Ni-Mn-Ga-Fe alloys. This improvement could be explained by mechanisms of blocking of crack propagation and crack blunting and bridging.</description><subject>Alloys</subject><subject>Applied sciences</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Crack propagation</subject><subject>Exact sciences and technology</subject><subject>Ferroelectrics</subject><subject>Ferromagnetism</subject><subject>Fracture mechanics</subject><subject>Fracture toughness</subject><subject>Fractures</subject><subject>Homogenizing</subject><subject>Magnetism</subject><subject>Materials Science</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metallic Materials</subject><subject>Metals. Metallurgy</subject><subject>Nanotechnology</subject><subject>Nickel</subject><subject>Nickel base alloys</subject><subject>Scanning electron microscopy</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kVFLHTEQhYO0oL3tD_AtCEJf0k6STdZ9vIjXCloftM8hG2evK7vJNbMr7L9v7JUKhT6EDHO-OUxOGDuW8E0C1N9JSmulAFnOGVRiOWBH0lRayKaCD6WGWgtjlT5kn4ieAEA22h6x8SqKu36a-Sb7MM0Z-W1LmF_81KfIfXx4F-7TvH2MSMTX0Q8L9cRTx3_24iaKSy82yDeYcxr9NuLUB3736HfIb3BMeeHrYUgLfWYfOz8Qfnm7V-zX5uL-_Ie4vr28Ol9fi1ApOQkv284AKq_PQJu6DVa2AU2Nyhqjje1qhW2Lf_oKGwumkqHzQZc6hLrTK_Z177vL6XlGmtzYU8Bh8BHTTE7aWuqqqkxT0JN_0Kc05_JAcg0YaJQFKJDcQyEnooyd2-V-9HlxEtxr_m6fvyv5u9f83VJmTt-MPQU_dNnH0NPfQWU0GFU-ZMXUnqMixS3m9wX-b_4biy2VhA</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Euh, Kwangjun</creator><creator>Lee, Jung-Moo</creator><creator>Nam, Duk-Hyun</creator><creator>Lee, Sunghak</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20111201</creationdate><title>In-Situ Fracture Observation and Fracture Toughness Analysis of Ni-Mn-Ga-Fe Ferromagnetic Shape Memory Alloys</title><author>Euh, Kwangjun ; Lee, Jung-Moo ; Nam, Duk-Hyun ; Lee, Sunghak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-a1bf50e2a380357bc61bce57e2655356f72ebbebc61b2e960541cfac3e96cc7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Alloys</topic><topic>Applied sciences</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Crack propagation</topic><topic>Exact sciences and technology</topic><topic>Ferroelectrics</topic><topic>Ferromagnetism</topic><topic>Fracture mechanics</topic><topic>Fracture toughness</topic><topic>Fractures</topic><topic>Homogenizing</topic><topic>Magnetism</topic><topic>Materials Science</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metallic Materials</topic><topic>Metals. Metallurgy</topic><topic>Nanotechnology</topic><topic>Nickel</topic><topic>Nickel base alloys</topic><topic>Scanning electron microscopy</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Euh, Kwangjun</creatorcontrib><creatorcontrib>Lee, Jung-Moo</creatorcontrib><creatorcontrib>Nam, Duk-Hyun</creatorcontrib><creatorcontrib>Lee, Sunghak</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Euh, Kwangjun</au><au>Lee, Jung-Moo</au><au>Nam, Duk-Hyun</au><au>Lee, Sunghak</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-Situ Fracture Observation and Fracture Toughness Analysis of Ni-Mn-Ga-Fe Ferromagnetic Shape Memory Alloys</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2011-12-01</date><risdate>2011</risdate><volume>42</volume><issue>13</issue><spage>3961</spage><epage>3968</epage><pages>3961-3968</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><coden>MMTAEB</coden><abstract>The fracture property improvement of Ni-Mn-Ga-Fe ferromagnetic shape memory alloys containing ductile
γ
particles was explained by direct observation of microfracture processes using an
in-situ
loading stage installed inside a scanning electron microscope (SEM) chamber. The Ni-Mn-Ga-Fe alloys contained a considerable amount of
γ
particles in
β
grains after the homogenization treatment at 1073 K to 1373 K (800 °C to 1100 °C). With increasing homogenization temperature,
γ
particles were coarsened and distributed homogeneously along
β
grain boundaries as well as inside
β
grains. According to the
in-situ
microfracture observation,
γ
particles effectively acted as blocking sites of crack propagation and provided the stable crack growth, which could be confirmed by the
R
-curve analysis. The increase in fracture resistance with increasing crack length improved overall fracture properties of the Ni-Mn-Ga-Fe alloys. This improvement could be explained by mechanisms of blocking of crack propagation and crack blunting and bridging.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11661-011-0804-y</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-5623 |
ispartof | Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2011-12, Vol.42 (13), p.3961-3968 |
issn | 1073-5623 1543-1940 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671344459 |
source | Springer Nature |
subjects | Alloys Applied sciences Characterization and Evaluation of Materials Chemistry and Materials Science Crack propagation Exact sciences and technology Ferroelectrics Ferromagnetism Fracture mechanics Fracture toughness Fractures Homogenizing Magnetism Materials Science Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology Metallic Materials Metals. Metallurgy Nanotechnology Nickel Nickel base alloys Scanning electron microscopy Structural Materials Surfaces and Interfaces Thin Films |
title | In-Situ Fracture Observation and Fracture Toughness Analysis of Ni-Mn-Ga-Fe Ferromagnetic Shape Memory Alloys |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T17%3A37%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-Situ%20Fracture%20Observation%20and%20Fracture%20Toughness%20Analysis%20of%20Ni-Mn-Ga-Fe%20Ferromagnetic%20Shape%20Memory%20Alloys&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Euh,%20Kwangjun&rft.date=2011-12-01&rft.volume=42&rft.issue=13&rft.spage=3961&rft.epage=3968&rft.pages=3961-3968&rft.issn=1073-5623&rft.eissn=1543-1940&rft.coden=MMTAEB&rft_id=info:doi/10.1007/s11661-011-0804-y&rft_dat=%3Cproquest_cross%3E1671344459%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c421t-a1bf50e2a380357bc61bce57e2655356f72ebbebc61b2e960541cfac3e96cc7f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=905092600&rft_id=info:pmid/&rfr_iscdi=true |