Loading…

Fracture and resistance-curve behavior in hybrid natural fiber and polypropylene fiber reinforced composites

This article presents the results of a combined experimental and theoretical study of fracture and resistance-curve behavior of hybrid natural fiber- and synthetic polymer fiber-reinforced composites that are being developed for potential applications in affordable housing. Fracture and resistance-c...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science 2012-03, Vol.47 (6), p.2864-2874
Main Authors: Tan, T., Santos, S. F., Savastano, H., Soboyejo, W. O.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c422t-717f4484704e3f4327d0aebf1d894c575ac61858ac92452dc6572761f104c34c3
cites cdi_FETCH-LOGICAL-c422t-717f4484704e3f4327d0aebf1d894c575ac61858ac92452dc6572761f104c34c3
container_end_page 2874
container_issue 6
container_start_page 2864
container_title Journal of materials science
container_volume 47
creator Tan, T.
Santos, S. F.
Savastano, H.
Soboyejo, W. O.
description This article presents the results of a combined experimental and theoretical study of fracture and resistance-curve behavior of hybrid natural fiber- and synthetic polymer fiber-reinforced composites that are being developed for potential applications in affordable housing. Fracture and resistance-curve behavior are studied using single-edge notched bend specimens. The sisal fibers used were examined using atomic force microscopy for fiber bundle structures. The underlying crack/microstructure interactions and fracture mechanisms are elucidated via in situ optical microscopy and ex-situ environmental scanning microscopy techniques. The observed crack bridging mechanisms are modeled using small and large scale bridging concepts. The implications of the results are then discussed for the design of eco-friendly building materials that are reinforced with natural and polypropylene fibers.
doi_str_mv 10.1007/s10853-011-6116-1
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671346165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A412800095</galeid><sourcerecordid>A412800095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-717f4484704e3f4327d0aebf1d894c575ac61858ac92452dc6572761f104c34c3</originalsourceid><addsrcrecordid>eNp1kU9r3DAQxUVJoZs_H6A3Qy_NQalGliz7GEKSBgKFpjkLrTzaKHglV7JD9ttHWwdKAkEDguH3hjfzCPkK7AwYUz8ysFbWlAHQBqCh8ImsQKqaipbVB2TFGOeUiwa-kMOcHxljUnFYkeEqGTvNCSsT-iph9nkywSK1c3rCao0P5snHVPlQPezWyfdVMAU3Q-X8GtM_1RiH3ZjiuBsw4Gs_oQ8uJot9ZeN2jNlPmI_JZ2eGjCev_xG5v7r8c_GT3v66vrk4v6VWcD5RBcoJ0QrFBNZO1Fz1zODaQd92wkoljW2gla2xHReS97Ypu6gGHDBh61JH5Psyt7j6O2Oe9NZni8NgAsY5a2gU1OUWjSzot3foY5xTKO4057JTwDrFC3W2UBszoN5vNpWzldfj1tsY0PnSPxfA23LZbj_29I2gMBM-Txsz56xv7n6_ZWFhbYo5J3R6TH5r0k4D0_tw9RKuLuHqfbgaioYvmlzYsMH03_bHohfHkKXn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259710972</pqid></control><display><type>article</type><title>Fracture and resistance-curve behavior in hybrid natural fiber and polypropylene fiber reinforced composites</title><source>Springer Link</source><creator>Tan, T. ; Santos, S. F. ; Savastano, H. ; Soboyejo, W. O.</creator><creatorcontrib>Tan, T. ; Santos, S. F. ; Savastano, H. ; Soboyejo, W. O.</creatorcontrib><description>This article presents the results of a combined experimental and theoretical study of fracture and resistance-curve behavior of hybrid natural fiber- and synthetic polymer fiber-reinforced composites that are being developed for potential applications in affordable housing. Fracture and resistance-curve behavior are studied using single-edge notched bend specimens. The sisal fibers used were examined using atomic force microscopy for fiber bundle structures. The underlying crack/microstructure interactions and fracture mechanisms are elucidated via in situ optical microscopy and ex-situ environmental scanning microscopy techniques. The observed crack bridging mechanisms are modeled using small and large scale bridging concepts. The implications of the results are then discussed for the design of eco-friendly building materials that are reinforced with natural and polypropylene fibers.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-011-6116-1</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Atomic force microscopy ; Building materials ; Bundling ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Construction materials ; Crack bridging ; Crystallography and Scattering Methods ; Fiber composites ; Fiber reinforced plastics ; Fiber reinforced polymers ; Fibers ; Fracture mechanics ; Materials Science ; Microscopy ; Optical microscopy ; Polymer matrix composites ; Polymer Sciences ; Polypropylene ; Polypropylenes ; Scanning microscopy ; Sisal ; Solid Mechanics</subject><ispartof>Journal of materials science, 2012-03, Vol.47 (6), p.2864-2874</ispartof><rights>Springer Science+Business Media, LLC 2011</rights><rights>COPYRIGHT 2012 Springer</rights><rights>Journal of Materials Science is a copyright of Springer, (2011). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-717f4484704e3f4327d0aebf1d894c575ac61858ac92452dc6572761f104c34c3</citedby><cites>FETCH-LOGICAL-c422t-717f4484704e3f4327d0aebf1d894c575ac61858ac92452dc6572761f104c34c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Tan, T.</creatorcontrib><creatorcontrib>Santos, S. F.</creatorcontrib><creatorcontrib>Savastano, H.</creatorcontrib><creatorcontrib>Soboyejo, W. O.</creatorcontrib><title>Fracture and resistance-curve behavior in hybrid natural fiber and polypropylene fiber reinforced composites</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>This article presents the results of a combined experimental and theoretical study of fracture and resistance-curve behavior of hybrid natural fiber- and synthetic polymer fiber-reinforced composites that are being developed for potential applications in affordable housing. Fracture and resistance-curve behavior are studied using single-edge notched bend specimens. The sisal fibers used were examined using atomic force microscopy for fiber bundle structures. The underlying crack/microstructure interactions and fracture mechanisms are elucidated via in situ optical microscopy and ex-situ environmental scanning microscopy techniques. The observed crack bridging mechanisms are modeled using small and large scale bridging concepts. The implications of the results are then discussed for the design of eco-friendly building materials that are reinforced with natural and polypropylene fibers.</description><subject>Atomic force microscopy</subject><subject>Building materials</subject><subject>Bundling</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Construction materials</subject><subject>Crack bridging</subject><subject>Crystallography and Scattering Methods</subject><subject>Fiber composites</subject><subject>Fiber reinforced plastics</subject><subject>Fiber reinforced polymers</subject><subject>Fibers</subject><subject>Fracture mechanics</subject><subject>Materials Science</subject><subject>Microscopy</subject><subject>Optical microscopy</subject><subject>Polymer matrix composites</subject><subject>Polymer Sciences</subject><subject>Polypropylene</subject><subject>Polypropylenes</subject><subject>Scanning microscopy</subject><subject>Sisal</subject><subject>Solid Mechanics</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kU9r3DAQxUVJoZs_H6A3Qy_NQalGliz7GEKSBgKFpjkLrTzaKHglV7JD9ttHWwdKAkEDguH3hjfzCPkK7AwYUz8ysFbWlAHQBqCh8ImsQKqaipbVB2TFGOeUiwa-kMOcHxljUnFYkeEqGTvNCSsT-iph9nkywSK1c3rCao0P5snHVPlQPezWyfdVMAU3Q-X8GtM_1RiH3ZjiuBsw4Gs_oQ8uJot9ZeN2jNlPmI_JZ2eGjCev_xG5v7r8c_GT3v66vrk4v6VWcD5RBcoJ0QrFBNZO1Fz1zODaQd92wkoljW2gla2xHReS97Ypu6gGHDBh61JH5Psyt7j6O2Oe9NZni8NgAsY5a2gU1OUWjSzot3foY5xTKO4057JTwDrFC3W2UBszoN5vNpWzldfj1tsY0PnSPxfA23LZbj_29I2gMBM-Txsz56xv7n6_ZWFhbYo5J3R6TH5r0k4D0_tw9RKuLuHqfbgaioYvmlzYsMH03_bHohfHkKXn</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Tan, T.</creator><creator>Santos, S. F.</creator><creator>Savastano, H.</creator><creator>Soboyejo, W. O.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20120301</creationdate><title>Fracture and resistance-curve behavior in hybrid natural fiber and polypropylene fiber reinforced composites</title><author>Tan, T. ; Santos, S. F. ; Savastano, H. ; Soboyejo, W. O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-717f4484704e3f4327d0aebf1d894c575ac61858ac92452dc6572761f104c34c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Atomic force microscopy</topic><topic>Building materials</topic><topic>Bundling</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Construction materials</topic><topic>Crack bridging</topic><topic>Crystallography and Scattering Methods</topic><topic>Fiber composites</topic><topic>Fiber reinforced plastics</topic><topic>Fiber reinforced polymers</topic><topic>Fibers</topic><topic>Fracture mechanics</topic><topic>Materials Science</topic><topic>Microscopy</topic><topic>Optical microscopy</topic><topic>Polymer matrix composites</topic><topic>Polymer Sciences</topic><topic>Polypropylene</topic><topic>Polypropylenes</topic><topic>Scanning microscopy</topic><topic>Sisal</topic><topic>Solid Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, T.</creatorcontrib><creatorcontrib>Santos, S. F.</creatorcontrib><creatorcontrib>Savastano, H.</creatorcontrib><creatorcontrib>Soboyejo, W. O.</creatorcontrib><collection>CrossRef</collection><collection>Science (Gale in Context)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, T.</au><au>Santos, S. F.</au><au>Savastano, H.</au><au>Soboyejo, W. O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fracture and resistance-curve behavior in hybrid natural fiber and polypropylene fiber reinforced composites</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2012-03-01</date><risdate>2012</risdate><volume>47</volume><issue>6</issue><spage>2864</spage><epage>2874</epage><pages>2864-2874</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>This article presents the results of a combined experimental and theoretical study of fracture and resistance-curve behavior of hybrid natural fiber- and synthetic polymer fiber-reinforced composites that are being developed for potential applications in affordable housing. Fracture and resistance-curve behavior are studied using single-edge notched bend specimens. The sisal fibers used were examined using atomic force microscopy for fiber bundle structures. The underlying crack/microstructure interactions and fracture mechanisms are elucidated via in situ optical microscopy and ex-situ environmental scanning microscopy techniques. The observed crack bridging mechanisms are modeled using small and large scale bridging concepts. The implications of the results are then discussed for the design of eco-friendly building materials that are reinforced with natural and polypropylene fibers.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10853-011-6116-1</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2012-03, Vol.47 (6), p.2864-2874
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_miscellaneous_1671346165
source Springer Link
subjects Atomic force microscopy
Building materials
Bundling
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Construction materials
Crack bridging
Crystallography and Scattering Methods
Fiber composites
Fiber reinforced plastics
Fiber reinforced polymers
Fibers
Fracture mechanics
Materials Science
Microscopy
Optical microscopy
Polymer matrix composites
Polymer Sciences
Polypropylene
Polypropylenes
Scanning microscopy
Sisal
Solid Mechanics
title Fracture and resistance-curve behavior in hybrid natural fiber and polypropylene fiber reinforced composites
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T04%3A36%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fracture%20and%20resistance-curve%20behavior%20in%20hybrid%20natural%20fiber%20and%20polypropylene%20fiber%20reinforced%20composites&rft.jtitle=Journal%20of%20materials%20science&rft.au=Tan,%20T.&rft.date=2012-03-01&rft.volume=47&rft.issue=6&rft.spage=2864&rft.epage=2874&rft.pages=2864-2874&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-011-6116-1&rft_dat=%3Cgale_proqu%3EA412800095%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-717f4484704e3f4327d0aebf1d894c575ac61858ac92452dc6572761f104c34c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2259710972&rft_id=info:pmid/&rft_galeid=A412800095&rfr_iscdi=true