Loading…
Fracture and resistance-curve behavior in hybrid natural fiber and polypropylene fiber reinforced composites
This article presents the results of a combined experimental and theoretical study of fracture and resistance-curve behavior of hybrid natural fiber- and synthetic polymer fiber-reinforced composites that are being developed for potential applications in affordable housing. Fracture and resistance-c...
Saved in:
Published in: | Journal of materials science 2012-03, Vol.47 (6), p.2864-2874 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c422t-717f4484704e3f4327d0aebf1d894c575ac61858ac92452dc6572761f104c34c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c422t-717f4484704e3f4327d0aebf1d894c575ac61858ac92452dc6572761f104c34c3 |
container_end_page | 2874 |
container_issue | 6 |
container_start_page | 2864 |
container_title | Journal of materials science |
container_volume | 47 |
creator | Tan, T. Santos, S. F. Savastano, H. Soboyejo, W. O. |
description | This article presents the results of a combined experimental and theoretical study of fracture and resistance-curve behavior of hybrid natural fiber- and synthetic polymer fiber-reinforced composites that are being developed for potential applications in affordable housing. Fracture and resistance-curve behavior are studied using single-edge notched bend specimens. The sisal fibers used were examined using atomic force microscopy for fiber bundle structures. The underlying crack/microstructure interactions and fracture mechanisms are elucidated via in situ optical microscopy and ex-situ environmental scanning microscopy techniques. The observed crack bridging mechanisms are modeled using small and large scale bridging concepts. The implications of the results are then discussed for the design of eco-friendly building materials that are reinforced with natural and polypropylene fibers. |
doi_str_mv | 10.1007/s10853-011-6116-1 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671346165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A412800095</galeid><sourcerecordid>A412800095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-717f4484704e3f4327d0aebf1d894c575ac61858ac92452dc6572761f104c34c3</originalsourceid><addsrcrecordid>eNp1kU9r3DAQxUVJoZs_H6A3Qy_NQalGliz7GEKSBgKFpjkLrTzaKHglV7JD9ttHWwdKAkEDguH3hjfzCPkK7AwYUz8ysFbWlAHQBqCh8ImsQKqaipbVB2TFGOeUiwa-kMOcHxljUnFYkeEqGTvNCSsT-iph9nkywSK1c3rCao0P5snHVPlQPezWyfdVMAU3Q-X8GtM_1RiH3ZjiuBsw4Gs_oQ8uJot9ZeN2jNlPmI_JZ2eGjCev_xG5v7r8c_GT3v66vrk4v6VWcD5RBcoJ0QrFBNZO1Fz1zODaQd92wkoljW2gla2xHReS97Ypu6gGHDBh61JH5Psyt7j6O2Oe9NZni8NgAsY5a2gU1OUWjSzot3foY5xTKO4057JTwDrFC3W2UBszoN5vNpWzldfj1tsY0PnSPxfA23LZbj_29I2gMBM-Txsz56xv7n6_ZWFhbYo5J3R6TH5r0k4D0_tw9RKuLuHqfbgaioYvmlzYsMH03_bHohfHkKXn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259710972</pqid></control><display><type>article</type><title>Fracture and resistance-curve behavior in hybrid natural fiber and polypropylene fiber reinforced composites</title><source>Springer Link</source><creator>Tan, T. ; Santos, S. F. ; Savastano, H. ; Soboyejo, W. O.</creator><creatorcontrib>Tan, T. ; Santos, S. F. ; Savastano, H. ; Soboyejo, W. O.</creatorcontrib><description>This article presents the results of a combined experimental and theoretical study of fracture and resistance-curve behavior of hybrid natural fiber- and synthetic polymer fiber-reinforced composites that are being developed for potential applications in affordable housing. Fracture and resistance-curve behavior are studied using single-edge notched bend specimens. The sisal fibers used were examined using atomic force microscopy for fiber bundle structures. The underlying crack/microstructure interactions and fracture mechanisms are elucidated via in situ optical microscopy and ex-situ environmental scanning microscopy techniques. The observed crack bridging mechanisms are modeled using small and large scale bridging concepts. The implications of the results are then discussed for the design of eco-friendly building materials that are reinforced with natural and polypropylene fibers.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-011-6116-1</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Atomic force microscopy ; Building materials ; Bundling ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Construction materials ; Crack bridging ; Crystallography and Scattering Methods ; Fiber composites ; Fiber reinforced plastics ; Fiber reinforced polymers ; Fibers ; Fracture mechanics ; Materials Science ; Microscopy ; Optical microscopy ; Polymer matrix composites ; Polymer Sciences ; Polypropylene ; Polypropylenes ; Scanning microscopy ; Sisal ; Solid Mechanics</subject><ispartof>Journal of materials science, 2012-03, Vol.47 (6), p.2864-2874</ispartof><rights>Springer Science+Business Media, LLC 2011</rights><rights>COPYRIGHT 2012 Springer</rights><rights>Journal of Materials Science is a copyright of Springer, (2011). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-717f4484704e3f4327d0aebf1d894c575ac61858ac92452dc6572761f104c34c3</citedby><cites>FETCH-LOGICAL-c422t-717f4484704e3f4327d0aebf1d894c575ac61858ac92452dc6572761f104c34c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Tan, T.</creatorcontrib><creatorcontrib>Santos, S. F.</creatorcontrib><creatorcontrib>Savastano, H.</creatorcontrib><creatorcontrib>Soboyejo, W. O.</creatorcontrib><title>Fracture and resistance-curve behavior in hybrid natural fiber and polypropylene fiber reinforced composites</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>This article presents the results of a combined experimental and theoretical study of fracture and resistance-curve behavior of hybrid natural fiber- and synthetic polymer fiber-reinforced composites that are being developed for potential applications in affordable housing. Fracture and resistance-curve behavior are studied using single-edge notched bend specimens. The sisal fibers used were examined using atomic force microscopy for fiber bundle structures. The underlying crack/microstructure interactions and fracture mechanisms are elucidated via in situ optical microscopy and ex-situ environmental scanning microscopy techniques. The observed crack bridging mechanisms are modeled using small and large scale bridging concepts. The implications of the results are then discussed for the design of eco-friendly building materials that are reinforced with natural and polypropylene fibers.</description><subject>Atomic force microscopy</subject><subject>Building materials</subject><subject>Bundling</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Construction materials</subject><subject>Crack bridging</subject><subject>Crystallography and Scattering Methods</subject><subject>Fiber composites</subject><subject>Fiber reinforced plastics</subject><subject>Fiber reinforced polymers</subject><subject>Fibers</subject><subject>Fracture mechanics</subject><subject>Materials Science</subject><subject>Microscopy</subject><subject>Optical microscopy</subject><subject>Polymer matrix composites</subject><subject>Polymer Sciences</subject><subject>Polypropylene</subject><subject>Polypropylenes</subject><subject>Scanning microscopy</subject><subject>Sisal</subject><subject>Solid Mechanics</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kU9r3DAQxUVJoZs_H6A3Qy_NQalGliz7GEKSBgKFpjkLrTzaKHglV7JD9ttHWwdKAkEDguH3hjfzCPkK7AwYUz8ysFbWlAHQBqCh8ImsQKqaipbVB2TFGOeUiwa-kMOcHxljUnFYkeEqGTvNCSsT-iph9nkywSK1c3rCao0P5snHVPlQPezWyfdVMAU3Q-X8GtM_1RiH3ZjiuBsw4Gs_oQ8uJot9ZeN2jNlPmI_JZ2eGjCev_xG5v7r8c_GT3v66vrk4v6VWcD5RBcoJ0QrFBNZO1Fz1zODaQd92wkoljW2gla2xHReS97Ypu6gGHDBh61JH5Psyt7j6O2Oe9NZni8NgAsY5a2gU1OUWjSzot3foY5xTKO4057JTwDrFC3W2UBszoN5vNpWzldfj1tsY0PnSPxfA23LZbj_29I2gMBM-Txsz56xv7n6_ZWFhbYo5J3R6TH5r0k4D0_tw9RKuLuHqfbgaioYvmlzYsMH03_bHohfHkKXn</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Tan, T.</creator><creator>Santos, S. F.</creator><creator>Savastano, H.</creator><creator>Soboyejo, W. O.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20120301</creationdate><title>Fracture and resistance-curve behavior in hybrid natural fiber and polypropylene fiber reinforced composites</title><author>Tan, T. ; Santos, S. F. ; Savastano, H. ; Soboyejo, W. O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-717f4484704e3f4327d0aebf1d894c575ac61858ac92452dc6572761f104c34c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Atomic force microscopy</topic><topic>Building materials</topic><topic>Bundling</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Construction materials</topic><topic>Crack bridging</topic><topic>Crystallography and Scattering Methods</topic><topic>Fiber composites</topic><topic>Fiber reinforced plastics</topic><topic>Fiber reinforced polymers</topic><topic>Fibers</topic><topic>Fracture mechanics</topic><topic>Materials Science</topic><topic>Microscopy</topic><topic>Optical microscopy</topic><topic>Polymer matrix composites</topic><topic>Polymer Sciences</topic><topic>Polypropylene</topic><topic>Polypropylenes</topic><topic>Scanning microscopy</topic><topic>Sisal</topic><topic>Solid Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, T.</creatorcontrib><creatorcontrib>Santos, S. F.</creatorcontrib><creatorcontrib>Savastano, H.</creatorcontrib><creatorcontrib>Soboyejo, W. O.</creatorcontrib><collection>CrossRef</collection><collection>Science (Gale in Context)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Database (Proquest)</collection><collection>ProQuest Central</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, T.</au><au>Santos, S. F.</au><au>Savastano, H.</au><au>Soboyejo, W. O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fracture and resistance-curve behavior in hybrid natural fiber and polypropylene fiber reinforced composites</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2012-03-01</date><risdate>2012</risdate><volume>47</volume><issue>6</issue><spage>2864</spage><epage>2874</epage><pages>2864-2874</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>This article presents the results of a combined experimental and theoretical study of fracture and resistance-curve behavior of hybrid natural fiber- and synthetic polymer fiber-reinforced composites that are being developed for potential applications in affordable housing. Fracture and resistance-curve behavior are studied using single-edge notched bend specimens. The sisal fibers used were examined using atomic force microscopy for fiber bundle structures. The underlying crack/microstructure interactions and fracture mechanisms are elucidated via in situ optical microscopy and ex-situ environmental scanning microscopy techniques. The observed crack bridging mechanisms are modeled using small and large scale bridging concepts. The implications of the results are then discussed for the design of eco-friendly building materials that are reinforced with natural and polypropylene fibers.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10853-011-6116-1</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2012-03, Vol.47 (6), p.2864-2874 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671346165 |
source | Springer Link |
subjects | Atomic force microscopy Building materials Bundling Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Construction materials Crack bridging Crystallography and Scattering Methods Fiber composites Fiber reinforced plastics Fiber reinforced polymers Fibers Fracture mechanics Materials Science Microscopy Optical microscopy Polymer matrix composites Polymer Sciences Polypropylene Polypropylenes Scanning microscopy Sisal Solid Mechanics |
title | Fracture and resistance-curve behavior in hybrid natural fiber and polypropylene fiber reinforced composites |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T04%3A36%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fracture%20and%20resistance-curve%20behavior%20in%20hybrid%20natural%20fiber%20and%20polypropylene%20fiber%20reinforced%20composites&rft.jtitle=Journal%20of%20materials%20science&rft.au=Tan,%20T.&rft.date=2012-03-01&rft.volume=47&rft.issue=6&rft.spage=2864&rft.epage=2874&rft.pages=2864-2874&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-011-6116-1&rft_dat=%3Cgale_proqu%3EA412800095%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-717f4484704e3f4327d0aebf1d894c575ac61858ac92452dc6572761f104c34c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2259710972&rft_id=info:pmid/&rft_galeid=A412800095&rfr_iscdi=true |