Loading…

Genetic transfer learning

Transfer learning is a method which aims to improve “related” tasks performance. Transfer learning tries to use information gained from related tasks solutions to improve performance of learning strategy. Transfer learning addresses the problem of how to utilize plenty of labeled data in a source do...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications 2010-10, Vol.37 (10), p.6997-7002
Main Authors: Koçer, Barış, Arslan, Ahmet
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c333t-5bf811f0634d998296e60b2ea347c5c281e945b560298a70297c1e24dc5fabad3
cites cdi_FETCH-LOGICAL-c333t-5bf811f0634d998296e60b2ea347c5c281e945b560298a70297c1e24dc5fabad3
container_end_page 7002
container_issue 10
container_start_page 6997
container_title Expert systems with applications
container_volume 37
creator Koçer, Barış
Arslan, Ahmet
description Transfer learning is a method which aims to improve “related” tasks performance. Transfer learning tries to use information gained from related tasks solutions to improve performance of learning strategy. Transfer learning addresses the problem of how to utilize plenty of labeled data in a source domain to solve related but different problems in a target domain, even when the training and testing problems have different distributions or features ( Pan, Kwok, & Yang, 2008). In this paper we have used transfer learning to improve performance of genetic algorithms.
doi_str_mv 10.1016/j.eswa.2010.03.019
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671356519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417410002009</els_id><sourcerecordid>1671356519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-5bf811f0634d998296e60b2ea347c5c281e945b560298a70297c1e24dc5fabad3</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhoMouK4-gJ726KV1JmmSBrzI4q7Cghc9hzSdSpZuuyZdxbe3az17mR-G_xuYj7EbhBwB1d02p_Tlcg7jAkQOaE7YDEstMqWNOGUzMFJnBerinF2ktAVADaBn7HpNHQ3BL4boutRQXLTkYhe690t21rg20dVfztnb6vF1-ZRtXtbPy4dN5oUQQyarpkRsQImiNqbkRpGCipMThfbS8xLJFLKSCrgpnR6n9ki8qL1sXOVqMWe309197D8OlAa7C8lT27qO-kOyqDQKqSSascqnqo99SpEau49h5-K3RbBHD3Zrjx7s0YMFYeEXup8gGp_4DBRt8oE6T3WI5Adb9-E__AcCm2Rn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671356519</pqid></control><display><type>article</type><title>Genetic transfer learning</title><source>ScienceDirect Freedom Collection</source><creator>Koçer, Barış ; Arslan, Ahmet</creator><creatorcontrib>Koçer, Barış ; Arslan, Ahmet</creatorcontrib><description>Transfer learning is a method which aims to improve “related” tasks performance. Transfer learning tries to use information gained from related tasks solutions to improve performance of learning strategy. Transfer learning addresses the problem of how to utilize plenty of labeled data in a source domain to solve related but different problems in a target domain, even when the training and testing problems have different distributions or features ( Pan, Kwok, &amp; Yang, 2008). In this paper we have used transfer learning to improve performance of genetic algorithms.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2010.03.019</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Expert systems ; Genetic algorithms ; Genetics ; Learning ; Learning to learn ; Performance enhancement ; Strategy ; Tasks ; Training ; Transfer learning</subject><ispartof>Expert systems with applications, 2010-10, Vol.37 (10), p.6997-7002</ispartof><rights>2010 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-5bf811f0634d998296e60b2ea347c5c281e945b560298a70297c1e24dc5fabad3</citedby><cites>FETCH-LOGICAL-c333t-5bf811f0634d998296e60b2ea347c5c281e945b560298a70297c1e24dc5fabad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Koçer, Barış</creatorcontrib><creatorcontrib>Arslan, Ahmet</creatorcontrib><title>Genetic transfer learning</title><title>Expert systems with applications</title><description>Transfer learning is a method which aims to improve “related” tasks performance. Transfer learning tries to use information gained from related tasks solutions to improve performance of learning strategy. Transfer learning addresses the problem of how to utilize plenty of labeled data in a source domain to solve related but different problems in a target domain, even when the training and testing problems have different distributions or features ( Pan, Kwok, &amp; Yang, 2008). In this paper we have used transfer learning to improve performance of genetic algorithms.</description><subject>Expert systems</subject><subject>Genetic algorithms</subject><subject>Genetics</subject><subject>Learning</subject><subject>Learning to learn</subject><subject>Performance enhancement</subject><subject>Strategy</subject><subject>Tasks</subject><subject>Training</subject><subject>Transfer learning</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAQhoMouK4-gJ726KV1JmmSBrzI4q7Cghc9hzSdSpZuuyZdxbe3az17mR-G_xuYj7EbhBwB1d02p_Tlcg7jAkQOaE7YDEstMqWNOGUzMFJnBerinF2ktAVADaBn7HpNHQ3BL4boutRQXLTkYhe690t21rg20dVfztnb6vF1-ZRtXtbPy4dN5oUQQyarpkRsQImiNqbkRpGCipMThfbS8xLJFLKSCrgpnR6n9ki8qL1sXOVqMWe309197D8OlAa7C8lT27qO-kOyqDQKqSSascqnqo99SpEau49h5-K3RbBHD3Zrjx7s0YMFYeEXup8gGp_4DBRt8oE6T3WI5Adb9-E__AcCm2Rn</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Koçer, Barış</creator><creator>Arslan, Ahmet</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20101001</creationdate><title>Genetic transfer learning</title><author>Koçer, Barış ; Arslan, Ahmet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-5bf811f0634d998296e60b2ea347c5c281e945b560298a70297c1e24dc5fabad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Expert systems</topic><topic>Genetic algorithms</topic><topic>Genetics</topic><topic>Learning</topic><topic>Learning to learn</topic><topic>Performance enhancement</topic><topic>Strategy</topic><topic>Tasks</topic><topic>Training</topic><topic>Transfer learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koçer, Barış</creatorcontrib><creatorcontrib>Arslan, Ahmet</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koçer, Barış</au><au>Arslan, Ahmet</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic transfer learning</atitle><jtitle>Expert systems with applications</jtitle><date>2010-10-01</date><risdate>2010</risdate><volume>37</volume><issue>10</issue><spage>6997</spage><epage>7002</epage><pages>6997-7002</pages><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>Transfer learning is a method which aims to improve “related” tasks performance. Transfer learning tries to use information gained from related tasks solutions to improve performance of learning strategy. Transfer learning addresses the problem of how to utilize plenty of labeled data in a source domain to solve related but different problems in a target domain, even when the training and testing problems have different distributions or features ( Pan, Kwok, &amp; Yang, 2008). In this paper we have used transfer learning to improve performance of genetic algorithms.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2010.03.019</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4174
ispartof Expert systems with applications, 2010-10, Vol.37 (10), p.6997-7002
issn 0957-4174
1873-6793
language eng
recordid cdi_proquest_miscellaneous_1671356519
source ScienceDirect Freedom Collection
subjects Expert systems
Genetic algorithms
Genetics
Learning
Learning to learn
Performance enhancement
Strategy
Tasks
Training
Transfer learning
title Genetic transfer learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A19%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20transfer%20learning&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Ko%C3%A7er,%20Bar%C4%B1%C5%9F&rft.date=2010-10-01&rft.volume=37&rft.issue=10&rft.spage=6997&rft.epage=7002&rft.pages=6997-7002&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2010.03.019&rft_dat=%3Cproquest_cross%3E1671356519%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c333t-5bf811f0634d998296e60b2ea347c5c281e945b560298a70297c1e24dc5fabad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671356519&rft_id=info:pmid/&rfr_iscdi=true