Loading…
Genetic transfer learning
Transfer learning is a method which aims to improve “related” tasks performance. Transfer learning tries to use information gained from related tasks solutions to improve performance of learning strategy. Transfer learning addresses the problem of how to utilize plenty of labeled data in a source do...
Saved in:
Published in: | Expert systems with applications 2010-10, Vol.37 (10), p.6997-7002 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c333t-5bf811f0634d998296e60b2ea347c5c281e945b560298a70297c1e24dc5fabad3 |
---|---|
cites | cdi_FETCH-LOGICAL-c333t-5bf811f0634d998296e60b2ea347c5c281e945b560298a70297c1e24dc5fabad3 |
container_end_page | 7002 |
container_issue | 10 |
container_start_page | 6997 |
container_title | Expert systems with applications |
container_volume | 37 |
creator | Koçer, Barış Arslan, Ahmet |
description | Transfer learning is a method which aims to improve “related” tasks performance. Transfer learning tries to use information gained from related tasks solutions to improve performance of learning strategy. Transfer learning addresses the problem of how to utilize plenty of labeled data in a source domain to solve related but different problems in a target domain, even when the training and testing problems have different distributions or features (
Pan, Kwok, & Yang, 2008). In this paper we have used transfer learning to improve performance of genetic algorithms. |
doi_str_mv | 10.1016/j.eswa.2010.03.019 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671356519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417410002009</els_id><sourcerecordid>1671356519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-5bf811f0634d998296e60b2ea347c5c281e945b560298a70297c1e24dc5fabad3</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhoMouK4-gJ726KV1JmmSBrzI4q7Cghc9hzSdSpZuuyZdxbe3az17mR-G_xuYj7EbhBwB1d02p_Tlcg7jAkQOaE7YDEstMqWNOGUzMFJnBerinF2ktAVADaBn7HpNHQ3BL4boutRQXLTkYhe690t21rg20dVfztnb6vF1-ZRtXtbPy4dN5oUQQyarpkRsQImiNqbkRpGCipMThfbS8xLJFLKSCrgpnR6n9ki8qL1sXOVqMWe309197D8OlAa7C8lT27qO-kOyqDQKqSSascqnqo99SpEau49h5-K3RbBHD3Zrjx7s0YMFYeEXup8gGp_4DBRt8oE6T3WI5Adb9-E__AcCm2Rn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671356519</pqid></control><display><type>article</type><title>Genetic transfer learning</title><source>ScienceDirect Freedom Collection</source><creator>Koçer, Barış ; Arslan, Ahmet</creator><creatorcontrib>Koçer, Barış ; Arslan, Ahmet</creatorcontrib><description>Transfer learning is a method which aims to improve “related” tasks performance. Transfer learning tries to use information gained from related tasks solutions to improve performance of learning strategy. Transfer learning addresses the problem of how to utilize plenty of labeled data in a source domain to solve related but different problems in a target domain, even when the training and testing problems have different distributions or features (
Pan, Kwok, & Yang, 2008). In this paper we have used transfer learning to improve performance of genetic algorithms.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2010.03.019</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Expert systems ; Genetic algorithms ; Genetics ; Learning ; Learning to learn ; Performance enhancement ; Strategy ; Tasks ; Training ; Transfer learning</subject><ispartof>Expert systems with applications, 2010-10, Vol.37 (10), p.6997-7002</ispartof><rights>2010 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-5bf811f0634d998296e60b2ea347c5c281e945b560298a70297c1e24dc5fabad3</citedby><cites>FETCH-LOGICAL-c333t-5bf811f0634d998296e60b2ea347c5c281e945b560298a70297c1e24dc5fabad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Koçer, Barış</creatorcontrib><creatorcontrib>Arslan, Ahmet</creatorcontrib><title>Genetic transfer learning</title><title>Expert systems with applications</title><description>Transfer learning is a method which aims to improve “related” tasks performance. Transfer learning tries to use information gained from related tasks solutions to improve performance of learning strategy. Transfer learning addresses the problem of how to utilize plenty of labeled data in a source domain to solve related but different problems in a target domain, even when the training and testing problems have different distributions or features (
Pan, Kwok, & Yang, 2008). In this paper we have used transfer learning to improve performance of genetic algorithms.</description><subject>Expert systems</subject><subject>Genetic algorithms</subject><subject>Genetics</subject><subject>Learning</subject><subject>Learning to learn</subject><subject>Performance enhancement</subject><subject>Strategy</subject><subject>Tasks</subject><subject>Training</subject><subject>Transfer learning</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAQhoMouK4-gJ726KV1JmmSBrzI4q7Cghc9hzSdSpZuuyZdxbe3az17mR-G_xuYj7EbhBwB1d02p_Tlcg7jAkQOaE7YDEstMqWNOGUzMFJnBerinF2ktAVADaBn7HpNHQ3BL4boutRQXLTkYhe690t21rg20dVfztnb6vF1-ZRtXtbPy4dN5oUQQyarpkRsQImiNqbkRpGCipMThfbS8xLJFLKSCrgpnR6n9ki8qL1sXOVqMWe309197D8OlAa7C8lT27qO-kOyqDQKqSSascqnqo99SpEau49h5-K3RbBHD3Zrjx7s0YMFYeEXup8gGp_4DBRt8oE6T3WI5Adb9-E__AcCm2Rn</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Koçer, Barış</creator><creator>Arslan, Ahmet</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20101001</creationdate><title>Genetic transfer learning</title><author>Koçer, Barış ; Arslan, Ahmet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-5bf811f0634d998296e60b2ea347c5c281e945b560298a70297c1e24dc5fabad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Expert systems</topic><topic>Genetic algorithms</topic><topic>Genetics</topic><topic>Learning</topic><topic>Learning to learn</topic><topic>Performance enhancement</topic><topic>Strategy</topic><topic>Tasks</topic><topic>Training</topic><topic>Transfer learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koçer, Barış</creatorcontrib><creatorcontrib>Arslan, Ahmet</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koçer, Barış</au><au>Arslan, Ahmet</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic transfer learning</atitle><jtitle>Expert systems with applications</jtitle><date>2010-10-01</date><risdate>2010</risdate><volume>37</volume><issue>10</issue><spage>6997</spage><epage>7002</epage><pages>6997-7002</pages><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>Transfer learning is a method which aims to improve “related” tasks performance. Transfer learning tries to use information gained from related tasks solutions to improve performance of learning strategy. Transfer learning addresses the problem of how to utilize plenty of labeled data in a source domain to solve related but different problems in a target domain, even when the training and testing problems have different distributions or features (
Pan, Kwok, & Yang, 2008). In this paper we have used transfer learning to improve performance of genetic algorithms.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2010.03.019</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4174 |
ispartof | Expert systems with applications, 2010-10, Vol.37 (10), p.6997-7002 |
issn | 0957-4174 1873-6793 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671356519 |
source | ScienceDirect Freedom Collection |
subjects | Expert systems Genetic algorithms Genetics Learning Learning to learn Performance enhancement Strategy Tasks Training Transfer learning |
title | Genetic transfer learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A19%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20transfer%20learning&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Ko%C3%A7er,%20Bar%C4%B1%C5%9F&rft.date=2010-10-01&rft.volume=37&rft.issue=10&rft.spage=6997&rft.epage=7002&rft.pages=6997-7002&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2010.03.019&rft_dat=%3Cproquest_cross%3E1671356519%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c333t-5bf811f0634d998296e60b2ea347c5c281e945b560298a70297c1e24dc5fabad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671356519&rft_id=info:pmid/&rfr_iscdi=true |