Loading…
GPR numerical simulation of full wave field based on UPML boundary condition of ADI-FDTD
Alternating direction implicit difference scheme (ADI-FDTD) divides a traditional time step into two time steps, with forward difference and backward difference, and integrates both the advantages of unconditional stability of implicit difference scheme and relatively simple calculation of explicit...
Saved in:
Published in: | NDT & E international : independent nondestructive testing and evaluation 2011-10, Vol.44 (6), p.495-504 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c372t-622acc490fd62384087370704c8b1b4f281058208541d433bdc5201c220d36d33 |
---|---|
cites | cdi_FETCH-LOGICAL-c372t-622acc490fd62384087370704c8b1b4f281058208541d433bdc5201c220d36d33 |
container_end_page | 504 |
container_issue | 6 |
container_start_page | 495 |
container_title | NDT & E international : independent nondestructive testing and evaluation |
container_volume | 44 |
creator | FENG, De-Shan DAI, Qian-Wei |
description | Alternating direction implicit difference scheme (ADI-FDTD) divides a traditional time step into two time steps, with forward difference and backward difference, and integrates both the advantages of unconditional stability of implicit difference scheme and relatively simple calculation of explicit difference scheme, it breaks through the constraint of Courand–Friedrichs–Levy (CFL), and is characterized by unconditional stability. And the boundary condition of uniaxial anisotropic perfectly matched layer (UPML) is anisotropic medium PML applied in absorption edge of FDTD area, with the absorption of wide band, simple iterative formula, and easy programming, without the electric and magnetic field splitting. By discretizing the Maxwell equations in a two dimensional structure, numerical formulas of ADI-FDTD with UPML boundary condition for GPR wave are presented in detail. GPR simulations are carried out for two models. Based on the analysis of numerical results, insights of the radar wave spreading and changing in space are obtained, which can provide a better interpretation of real radar data. The results show that the ADI-FDTD algorithm based on the UPML boundary condition can deploy larger time step and eliminate the strong reflection on the truncated boundaries, lead to an efficient GPR modeling. |
doi_str_mv | 10.1016/j.ndteint.2011.05.001 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671361968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S096386951100051X</els_id><sourcerecordid>1671361968</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-622acc490fd62384087370704c8b1b4f281058208541d433bdc5201c220d36d33</originalsourceid><addsrcrecordid>eNqFkE9LxDAQxYMouK5-BCEXwUvrJGmT9CTi-g9WFFHwFtIkhSzdVJNW8dsb2dWrpznMe_Pm_RA6JlASIPxsVQY7Oh_GkgIhJdQlANlBMyJFUxAiql00g4azQvKm3kcHKa0AgFZMzNDrzeMTDtPaRW90j5NfT70e_RDw0OFu6nv8qT8c7rzrLW51chbn3cvj_RK3wxSsjl_YDMH6X8_F4q64XjwvDtFep_vkjrZzjl6ur54vb4vlw83d5cWyMEzQseCUamOqBjrLKZMVSMEECKiMbElbdVQSqCUFWVfEVoy11tS5paEULOOWsTk63dx9i8P75NKo1j4Z1_c6uGFKinBBGCcNl1lab6QmDilF16m36Ne5gSKgfkiqldqSVD8kFdQqk8y-k22EThlSF3UwPv2ZM0gQNH8_R-cbnct9P7yLKhnvgnHWR2dGZQf_T9I3C_qJMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671361968</pqid></control><display><type>article</type><title>GPR numerical simulation of full wave field based on UPML boundary condition of ADI-FDTD</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>FENG, De-Shan ; DAI, Qian-Wei</creator><creatorcontrib>FENG, De-Shan ; DAI, Qian-Wei</creatorcontrib><description>Alternating direction implicit difference scheme (ADI-FDTD) divides a traditional time step into two time steps, with forward difference and backward difference, and integrates both the advantages of unconditional stability of implicit difference scheme and relatively simple calculation of explicit difference scheme, it breaks through the constraint of Courand–Friedrichs–Levy (CFL), and is characterized by unconditional stability. And the boundary condition of uniaxial anisotropic perfectly matched layer (UPML) is anisotropic medium PML applied in absorption edge of FDTD area, with the absorption of wide band, simple iterative formula, and easy programming, without the electric and magnetic field splitting. By discretizing the Maxwell equations in a two dimensional structure, numerical formulas of ADI-FDTD with UPML boundary condition for GPR wave are presented in detail. GPR simulations are carried out for two models. Based on the analysis of numerical results, insights of the radar wave spreading and changing in space are obtained, which can provide a better interpretation of real radar data. The results show that the ADI-FDTD algorithm based on the UPML boundary condition can deploy larger time step and eliminate the strong reflection on the truncated boundaries, lead to an efficient GPR modeling.</description><identifier>ISSN: 0963-8695</identifier><identifier>EISSN: 1879-1174</identifier><identifier>DOI: 10.1016/j.ndteint.2011.05.001</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Algorithms ; Alternating direction iterative finite difference method ; Anisotropy ; Applied sciences ; Boundary conditions ; Buildings. Public works ; Computer simulation ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Ground-penetrating radar ; Materials science ; Materials testing ; Mathematical models ; Measurements. Technique of testing ; Numerical simulation ; Perfectly matched layers ; Physics ; Radar data ; Stability ; Uniaxial perfectly matched layer</subject><ispartof>NDT & E international : independent nondestructive testing and evaluation, 2011-10, Vol.44 (6), p.495-504</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-622acc490fd62384087370704c8b1b4f281058208541d433bdc5201c220d36d33</citedby><cites>FETCH-LOGICAL-c372t-622acc490fd62384087370704c8b1b4f281058208541d433bdc5201c220d36d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24307262$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>FENG, De-Shan</creatorcontrib><creatorcontrib>DAI, Qian-Wei</creatorcontrib><title>GPR numerical simulation of full wave field based on UPML boundary condition of ADI-FDTD</title><title>NDT & E international : independent nondestructive testing and evaluation</title><description>Alternating direction implicit difference scheme (ADI-FDTD) divides a traditional time step into two time steps, with forward difference and backward difference, and integrates both the advantages of unconditional stability of implicit difference scheme and relatively simple calculation of explicit difference scheme, it breaks through the constraint of Courand–Friedrichs–Levy (CFL), and is characterized by unconditional stability. And the boundary condition of uniaxial anisotropic perfectly matched layer (UPML) is anisotropic medium PML applied in absorption edge of FDTD area, with the absorption of wide band, simple iterative formula, and easy programming, without the electric and magnetic field splitting. By discretizing the Maxwell equations in a two dimensional structure, numerical formulas of ADI-FDTD with UPML boundary condition for GPR wave are presented in detail. GPR simulations are carried out for two models. Based on the analysis of numerical results, insights of the radar wave spreading and changing in space are obtained, which can provide a better interpretation of real radar data. The results show that the ADI-FDTD algorithm based on the UPML boundary condition can deploy larger time step and eliminate the strong reflection on the truncated boundaries, lead to an efficient GPR modeling.</description><subject>Algorithms</subject><subject>Alternating direction iterative finite difference method</subject><subject>Anisotropy</subject><subject>Applied sciences</subject><subject>Boundary conditions</subject><subject>Buildings. Public works</subject><subject>Computer simulation</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Ground-penetrating radar</subject><subject>Materials science</subject><subject>Materials testing</subject><subject>Mathematical models</subject><subject>Measurements. Technique of testing</subject><subject>Numerical simulation</subject><subject>Perfectly matched layers</subject><subject>Physics</subject><subject>Radar data</subject><subject>Stability</subject><subject>Uniaxial perfectly matched layer</subject><issn>0963-8695</issn><issn>1879-1174</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LxDAQxYMouK5-BCEXwUvrJGmT9CTi-g9WFFHwFtIkhSzdVJNW8dsb2dWrpznMe_Pm_RA6JlASIPxsVQY7Oh_GkgIhJdQlANlBMyJFUxAiql00g4azQvKm3kcHKa0AgFZMzNDrzeMTDtPaRW90j5NfT70e_RDw0OFu6nv8qT8c7rzrLW51chbn3cvj_RK3wxSsjl_YDMH6X8_F4q64XjwvDtFep_vkjrZzjl6ur54vb4vlw83d5cWyMEzQseCUamOqBjrLKZMVSMEECKiMbElbdVQSqCUFWVfEVoy11tS5paEULOOWsTk63dx9i8P75NKo1j4Z1_c6uGFKinBBGCcNl1lab6QmDilF16m36Ne5gSKgfkiqldqSVD8kFdQqk8y-k22EThlSF3UwPv2ZM0gQNH8_R-cbnct9P7yLKhnvgnHWR2dGZQf_T9I3C_qJMQ</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>FENG, De-Shan</creator><creator>DAI, Qian-Wei</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>20111001</creationdate><title>GPR numerical simulation of full wave field based on UPML boundary condition of ADI-FDTD</title><author>FENG, De-Shan ; DAI, Qian-Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-622acc490fd62384087370704c8b1b4f281058208541d433bdc5201c220d36d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Alternating direction iterative finite difference method</topic><topic>Anisotropy</topic><topic>Applied sciences</topic><topic>Boundary conditions</topic><topic>Buildings. Public works</topic><topic>Computer simulation</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Ground-penetrating radar</topic><topic>Materials science</topic><topic>Materials testing</topic><topic>Mathematical models</topic><topic>Measurements. Technique of testing</topic><topic>Numerical simulation</topic><topic>Perfectly matched layers</topic><topic>Physics</topic><topic>Radar data</topic><topic>Stability</topic><topic>Uniaxial perfectly matched layer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>FENG, De-Shan</creatorcontrib><creatorcontrib>DAI, Qian-Wei</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>NDT & E international : independent nondestructive testing and evaluation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>FENG, De-Shan</au><au>DAI, Qian-Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GPR numerical simulation of full wave field based on UPML boundary condition of ADI-FDTD</atitle><jtitle>NDT & E international : independent nondestructive testing and evaluation</jtitle><date>2011-10-01</date><risdate>2011</risdate><volume>44</volume><issue>6</issue><spage>495</spage><epage>504</epage><pages>495-504</pages><issn>0963-8695</issn><eissn>1879-1174</eissn><abstract>Alternating direction implicit difference scheme (ADI-FDTD) divides a traditional time step into two time steps, with forward difference and backward difference, and integrates both the advantages of unconditional stability of implicit difference scheme and relatively simple calculation of explicit difference scheme, it breaks through the constraint of Courand–Friedrichs–Levy (CFL), and is characterized by unconditional stability. And the boundary condition of uniaxial anisotropic perfectly matched layer (UPML) is anisotropic medium PML applied in absorption edge of FDTD area, with the absorption of wide band, simple iterative formula, and easy programming, without the electric and magnetic field splitting. By discretizing the Maxwell equations in a two dimensional structure, numerical formulas of ADI-FDTD with UPML boundary condition for GPR wave are presented in detail. GPR simulations are carried out for two models. Based on the analysis of numerical results, insights of the radar wave spreading and changing in space are obtained, which can provide a better interpretation of real radar data. The results show that the ADI-FDTD algorithm based on the UPML boundary condition can deploy larger time step and eliminate the strong reflection on the truncated boundaries, lead to an efficient GPR modeling.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ndteint.2011.05.001</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0963-8695 |
ispartof | NDT & E international : independent nondestructive testing and evaluation, 2011-10, Vol.44 (6), p.495-504 |
issn | 0963-8695 1879-1174 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671361968 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Algorithms Alternating direction iterative finite difference method Anisotropy Applied sciences Boundary conditions Buildings. Public works Computer simulation Cross-disciplinary physics: materials science rheology Exact sciences and technology Ground-penetrating radar Materials science Materials testing Mathematical models Measurements. Technique of testing Numerical simulation Perfectly matched layers Physics Radar data Stability Uniaxial perfectly matched layer |
title | GPR numerical simulation of full wave field based on UPML boundary condition of ADI-FDTD |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A53%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GPR%20numerical%20simulation%20of%20full%20wave%20field%20based%20on%20UPML%20boundary%20condition%20of%20ADI-FDTD&rft.jtitle=NDT%20&%20E%20international%20:%20independent%20nondestructive%20testing%20and%20evaluation&rft.au=FENG,%20De-Shan&rft.date=2011-10-01&rft.volume=44&rft.issue=6&rft.spage=495&rft.epage=504&rft.pages=495-504&rft.issn=0963-8695&rft.eissn=1879-1174&rft_id=info:doi/10.1016/j.ndteint.2011.05.001&rft_dat=%3Cproquest_cross%3E1671361968%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-622acc490fd62384087370704c8b1b4f281058208541d433bdc5201c220d36d33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671361968&rft_id=info:pmid/&rfr_iscdi=true |