Loading…

GPR numerical simulation of full wave field based on UPML boundary condition of ADI-FDTD

Alternating direction implicit difference scheme (ADI-FDTD) divides a traditional time step into two time steps, with forward difference and backward difference, and integrates both the advantages of unconditional stability of implicit difference scheme and relatively simple calculation of explicit...

Full description

Saved in:
Bibliographic Details
Published in:NDT & E international : independent nondestructive testing and evaluation 2011-10, Vol.44 (6), p.495-504
Main Authors: FENG, De-Shan, DAI, Qian-Wei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c372t-622acc490fd62384087370704c8b1b4f281058208541d433bdc5201c220d36d33
cites cdi_FETCH-LOGICAL-c372t-622acc490fd62384087370704c8b1b4f281058208541d433bdc5201c220d36d33
container_end_page 504
container_issue 6
container_start_page 495
container_title NDT & E international : independent nondestructive testing and evaluation
container_volume 44
creator FENG, De-Shan
DAI, Qian-Wei
description Alternating direction implicit difference scheme (ADI-FDTD) divides a traditional time step into two time steps, with forward difference and backward difference, and integrates both the advantages of unconditional stability of implicit difference scheme and relatively simple calculation of explicit difference scheme, it breaks through the constraint of Courand–Friedrichs–Levy (CFL), and is characterized by unconditional stability. And the boundary condition of uniaxial anisotropic perfectly matched layer (UPML) is anisotropic medium PML applied in absorption edge of FDTD area, with the absorption of wide band, simple iterative formula, and easy programming, without the electric and magnetic field splitting. By discretizing the Maxwell equations in a two dimensional structure, numerical formulas of ADI-FDTD with UPML boundary condition for GPR wave are presented in detail. GPR simulations are carried out for two models. Based on the analysis of numerical results, insights of the radar wave spreading and changing in space are obtained, which can provide a better interpretation of real radar data. The results show that the ADI-FDTD algorithm based on the UPML boundary condition can deploy larger time step and eliminate the strong reflection on the truncated boundaries, lead to an efficient GPR modeling.
doi_str_mv 10.1016/j.ndteint.2011.05.001
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671361968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S096386951100051X</els_id><sourcerecordid>1671361968</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-622acc490fd62384087370704c8b1b4f281058208541d433bdc5201c220d36d33</originalsourceid><addsrcrecordid>eNqFkE9LxDAQxYMouK5-BCEXwUvrJGmT9CTi-g9WFFHwFtIkhSzdVJNW8dsb2dWrpznMe_Pm_RA6JlASIPxsVQY7Oh_GkgIhJdQlANlBMyJFUxAiql00g4azQvKm3kcHKa0AgFZMzNDrzeMTDtPaRW90j5NfT70e_RDw0OFu6nv8qT8c7rzrLW51chbn3cvj_RK3wxSsjl_YDMH6X8_F4q64XjwvDtFep_vkjrZzjl6ur54vb4vlw83d5cWyMEzQseCUamOqBjrLKZMVSMEECKiMbElbdVQSqCUFWVfEVoy11tS5paEULOOWsTk63dx9i8P75NKo1j4Z1_c6uGFKinBBGCcNl1lab6QmDilF16m36Ne5gSKgfkiqldqSVD8kFdQqk8y-k22EThlSF3UwPv2ZM0gQNH8_R-cbnct9P7yLKhnvgnHWR2dGZQf_T9I3C_qJMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671361968</pqid></control><display><type>article</type><title>GPR numerical simulation of full wave field based on UPML boundary condition of ADI-FDTD</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>FENG, De-Shan ; DAI, Qian-Wei</creator><creatorcontrib>FENG, De-Shan ; DAI, Qian-Wei</creatorcontrib><description>Alternating direction implicit difference scheme (ADI-FDTD) divides a traditional time step into two time steps, with forward difference and backward difference, and integrates both the advantages of unconditional stability of implicit difference scheme and relatively simple calculation of explicit difference scheme, it breaks through the constraint of Courand–Friedrichs–Levy (CFL), and is characterized by unconditional stability. And the boundary condition of uniaxial anisotropic perfectly matched layer (UPML) is anisotropic medium PML applied in absorption edge of FDTD area, with the absorption of wide band, simple iterative formula, and easy programming, without the electric and magnetic field splitting. By discretizing the Maxwell equations in a two dimensional structure, numerical formulas of ADI-FDTD with UPML boundary condition for GPR wave are presented in detail. GPR simulations are carried out for two models. Based on the analysis of numerical results, insights of the radar wave spreading and changing in space are obtained, which can provide a better interpretation of real radar data. The results show that the ADI-FDTD algorithm based on the UPML boundary condition can deploy larger time step and eliminate the strong reflection on the truncated boundaries, lead to an efficient GPR modeling.</description><identifier>ISSN: 0963-8695</identifier><identifier>EISSN: 1879-1174</identifier><identifier>DOI: 10.1016/j.ndteint.2011.05.001</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Algorithms ; Alternating direction iterative finite difference method ; Anisotropy ; Applied sciences ; Boundary conditions ; Buildings. Public works ; Computer simulation ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Ground-penetrating radar ; Materials science ; Materials testing ; Mathematical models ; Measurements. Technique of testing ; Numerical simulation ; Perfectly matched layers ; Physics ; Radar data ; Stability ; Uniaxial perfectly matched layer</subject><ispartof>NDT &amp; E international : independent nondestructive testing and evaluation, 2011-10, Vol.44 (6), p.495-504</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-622acc490fd62384087370704c8b1b4f281058208541d433bdc5201c220d36d33</citedby><cites>FETCH-LOGICAL-c372t-622acc490fd62384087370704c8b1b4f281058208541d433bdc5201c220d36d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24307262$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>FENG, De-Shan</creatorcontrib><creatorcontrib>DAI, Qian-Wei</creatorcontrib><title>GPR numerical simulation of full wave field based on UPML boundary condition of ADI-FDTD</title><title>NDT &amp; E international : independent nondestructive testing and evaluation</title><description>Alternating direction implicit difference scheme (ADI-FDTD) divides a traditional time step into two time steps, with forward difference and backward difference, and integrates both the advantages of unconditional stability of implicit difference scheme and relatively simple calculation of explicit difference scheme, it breaks through the constraint of Courand–Friedrichs–Levy (CFL), and is characterized by unconditional stability. And the boundary condition of uniaxial anisotropic perfectly matched layer (UPML) is anisotropic medium PML applied in absorption edge of FDTD area, with the absorption of wide band, simple iterative formula, and easy programming, without the electric and magnetic field splitting. By discretizing the Maxwell equations in a two dimensional structure, numerical formulas of ADI-FDTD with UPML boundary condition for GPR wave are presented in detail. GPR simulations are carried out for two models. Based on the analysis of numerical results, insights of the radar wave spreading and changing in space are obtained, which can provide a better interpretation of real radar data. The results show that the ADI-FDTD algorithm based on the UPML boundary condition can deploy larger time step and eliminate the strong reflection on the truncated boundaries, lead to an efficient GPR modeling.</description><subject>Algorithms</subject><subject>Alternating direction iterative finite difference method</subject><subject>Anisotropy</subject><subject>Applied sciences</subject><subject>Boundary conditions</subject><subject>Buildings. Public works</subject><subject>Computer simulation</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Ground-penetrating radar</subject><subject>Materials science</subject><subject>Materials testing</subject><subject>Mathematical models</subject><subject>Measurements. Technique of testing</subject><subject>Numerical simulation</subject><subject>Perfectly matched layers</subject><subject>Physics</subject><subject>Radar data</subject><subject>Stability</subject><subject>Uniaxial perfectly matched layer</subject><issn>0963-8695</issn><issn>1879-1174</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LxDAQxYMouK5-BCEXwUvrJGmT9CTi-g9WFFHwFtIkhSzdVJNW8dsb2dWrpznMe_Pm_RA6JlASIPxsVQY7Oh_GkgIhJdQlANlBMyJFUxAiql00g4azQvKm3kcHKa0AgFZMzNDrzeMTDtPaRW90j5NfT70e_RDw0OFu6nv8qT8c7rzrLW51chbn3cvj_RK3wxSsjl_YDMH6X8_F4q64XjwvDtFep_vkjrZzjl6ur54vb4vlw83d5cWyMEzQseCUamOqBjrLKZMVSMEECKiMbElbdVQSqCUFWVfEVoy11tS5paEULOOWsTk63dx9i8P75NKo1j4Z1_c6uGFKinBBGCcNl1lab6QmDilF16m36Ne5gSKgfkiqldqSVD8kFdQqk8y-k22EThlSF3UwPv2ZM0gQNH8_R-cbnct9P7yLKhnvgnHWR2dGZQf_T9I3C_qJMQ</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>FENG, De-Shan</creator><creator>DAI, Qian-Wei</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>20111001</creationdate><title>GPR numerical simulation of full wave field based on UPML boundary condition of ADI-FDTD</title><author>FENG, De-Shan ; DAI, Qian-Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-622acc490fd62384087370704c8b1b4f281058208541d433bdc5201c220d36d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Alternating direction iterative finite difference method</topic><topic>Anisotropy</topic><topic>Applied sciences</topic><topic>Boundary conditions</topic><topic>Buildings. Public works</topic><topic>Computer simulation</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Ground-penetrating radar</topic><topic>Materials science</topic><topic>Materials testing</topic><topic>Mathematical models</topic><topic>Measurements. Technique of testing</topic><topic>Numerical simulation</topic><topic>Perfectly matched layers</topic><topic>Physics</topic><topic>Radar data</topic><topic>Stability</topic><topic>Uniaxial perfectly matched layer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>FENG, De-Shan</creatorcontrib><creatorcontrib>DAI, Qian-Wei</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>NDT &amp; E international : independent nondestructive testing and evaluation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>FENG, De-Shan</au><au>DAI, Qian-Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GPR numerical simulation of full wave field based on UPML boundary condition of ADI-FDTD</atitle><jtitle>NDT &amp; E international : independent nondestructive testing and evaluation</jtitle><date>2011-10-01</date><risdate>2011</risdate><volume>44</volume><issue>6</issue><spage>495</spage><epage>504</epage><pages>495-504</pages><issn>0963-8695</issn><eissn>1879-1174</eissn><abstract>Alternating direction implicit difference scheme (ADI-FDTD) divides a traditional time step into two time steps, with forward difference and backward difference, and integrates both the advantages of unconditional stability of implicit difference scheme and relatively simple calculation of explicit difference scheme, it breaks through the constraint of Courand–Friedrichs–Levy (CFL), and is characterized by unconditional stability. And the boundary condition of uniaxial anisotropic perfectly matched layer (UPML) is anisotropic medium PML applied in absorption edge of FDTD area, with the absorption of wide band, simple iterative formula, and easy programming, without the electric and magnetic field splitting. By discretizing the Maxwell equations in a two dimensional structure, numerical formulas of ADI-FDTD with UPML boundary condition for GPR wave are presented in detail. GPR simulations are carried out for two models. Based on the analysis of numerical results, insights of the radar wave spreading and changing in space are obtained, which can provide a better interpretation of real radar data. The results show that the ADI-FDTD algorithm based on the UPML boundary condition can deploy larger time step and eliminate the strong reflection on the truncated boundaries, lead to an efficient GPR modeling.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ndteint.2011.05.001</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0963-8695
ispartof NDT & E international : independent nondestructive testing and evaluation, 2011-10, Vol.44 (6), p.495-504
issn 0963-8695
1879-1174
language eng
recordid cdi_proquest_miscellaneous_1671361968
source ScienceDirect Freedom Collection 2022-2024
subjects Algorithms
Alternating direction iterative finite difference method
Anisotropy
Applied sciences
Boundary conditions
Buildings. Public works
Computer simulation
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Ground-penetrating radar
Materials science
Materials testing
Mathematical models
Measurements. Technique of testing
Numerical simulation
Perfectly matched layers
Physics
Radar data
Stability
Uniaxial perfectly matched layer
title GPR numerical simulation of full wave field based on UPML boundary condition of ADI-FDTD
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A53%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GPR%20numerical%20simulation%20of%20full%20wave%20field%20based%20on%20UPML%20boundary%20condition%20of%20ADI-FDTD&rft.jtitle=NDT%20&%20E%20international%20:%20independent%20nondestructive%20testing%20and%20evaluation&rft.au=FENG,%20De-Shan&rft.date=2011-10-01&rft.volume=44&rft.issue=6&rft.spage=495&rft.epage=504&rft.pages=495-504&rft.issn=0963-8695&rft.eissn=1879-1174&rft_id=info:doi/10.1016/j.ndteint.2011.05.001&rft_dat=%3Cproquest_cross%3E1671361968%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-622acc490fd62384087370704c8b1b4f281058208541d433bdc5201c220d36d33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671361968&rft_id=info:pmid/&rfr_iscdi=true