Loading…

Crystallographic Analysis of Isothermally Transformed Bainite in 0.2C–2.0Mn–1.5Si–0.6Cr Steel Using EBSD

The crystallography of bainite, transformed isothermally at 450 °C in 0.2C–2.0Mn–1.5Si–0.6Cr steel, was investigated by electron backscatter diffraction (EBSD) analysis. The orientation relationship (OR) was found to be closer to Nishiyama–Wassermann (N–W) than Kurdjumov–Sachs orientation relationsh...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science & technology 2013-04, Vol.29 (4), p.359-366
Main Authors: Suikkanen, Pasi P., Cayron, Cyril, DeArdo, Anthony J., Karjalainen, L. Pentti
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The crystallography of bainite, transformed isothermally at 450 °C in 0.2C–2.0Mn–1.5Si–0.6Cr steel, was investigated by electron backscatter diffraction (EBSD) analysis. The orientation relationship (OR) was found to be closer to Nishiyama–Wassermann (N–W) than Kurdjumov–Sachs orientation relationship. Bainite microstructure consisted of parallel laths forming a morphological packet structure. Typically, there were three different lath orientations in a morphological packet. These orientations were dictated by a three specific N–W OR variants sharing the same {111} austenite plane. A packet of bainite laths with common {111} austenite plane was termed as crystallographic packet. Generally, the crystallographic packet size corresponded to the morphological packet size. Locally, crystallographic packets with only two dominant orientations were observed. This indicates strong local variant selection during isothermal bainite transformation. The relative orientation between the variants in crystallographic packets was found to be near 60°/ . This appears to explain the strong peak observed in the grain boundary misorientation distribution near 60°. Bainite also contained pronounced fraction of boundaries with their misorientation in the range of 2.5°–8° with quite widely dispersed rotation angles. Spatially these boundaries were found to locate inside the bainite laths, forming lath-like sub-grains.
ISSN:1005-0302
1941-1162
DOI:10.1016/j.jmst.2013.01.015