Loading…

Development and simulation evaluation of a magnetorheological elastomer isolator for seat vibration control

Driver fatigue is one of the leading factors contributing to road crashes. Environmental stress, such as unwanted seat vibration, is a key contributor to fatigue. This article presents the design and development of a magnetorheological elastomer isolator for a seat suspension system. By altering the...

Full description

Saved in:
Bibliographic Details
Published in:Journal of intelligent material systems and structures 2012-06, Vol.23 (9), p.1041-1048
Main Authors: Li, Weihua, Zhang, Xianzhou, Du, Haiping
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Driver fatigue is one of the leading factors contributing to road crashes. Environmental stress, such as unwanted seat vibration, is a key contributor to fatigue. This article presents the design and development of a magnetorheological elastomer isolator for a seat suspension system. By altering the magnetorheological elastomer isolator’s stiffness through a controllable magnetic field and selecting suitable control strategy, the system’s natural frequency can be changed to avoid resonance, which consequently reduce the vehicle’s vibration energy input to seat, and thus suppress the seat’s response. Experimental results show that the developed magnetorheological elastomer isolator is able to reduce vibration more when compared with the passive isolation system, indicating the significant potential of its application in vehicle seat vibration control.
ISSN:1045-389X
1530-8138
DOI:10.1177/1045389X11435431