Loading…

New examples of Willmore submanifolds in the unit sphere via isoparametric functions

An isometric immersion is called Willmore if it is an extremal submanifold of the Willmore functional: , where S is the norm square of the second fundamental form and H is the mean curvature. Examples of Willmore submanifolds in the unit sphere are scarce in the literature. This article gives a seri...

Full description

Saved in:
Bibliographic Details
Published in:Annals of global analysis and geometry 2012-10, Vol.42 (3), p.403-410
Main Authors: Tang, Zizhou, Yan, Wenjiao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c415t-500438d63984e8b134ed502f8389cb6d678921205fd7ffe8b9218841f85789c53
cites cdi_FETCH-LOGICAL-c415t-500438d63984e8b134ed502f8389cb6d678921205fd7ffe8b9218841f85789c53
container_end_page 410
container_issue 3
container_start_page 403
container_title Annals of global analysis and geometry
container_volume 42
creator Tang, Zizhou
Yan, Wenjiao
description An isometric immersion is called Willmore if it is an extremal submanifold of the Willmore functional: , where S is the norm square of the second fundamental form and H is the mean curvature. Examples of Willmore submanifolds in the unit sphere are scarce in the literature. This article gives a series of new examples of Willmore submanifolds in the unit sphere via isoparametric functions of FKM-type.
doi_str_mv 10.1007/s10455-012-9319-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671368955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2770617431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-500438d63984e8b134ed502f8389cb6d678921205fd7ffe8b9218841f85789c53</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOI7-AHcBN26qN03SpEsZfMGgmxHdhUybOBnapiatj_n1ZhgXIri6HM53DpeD0CmBCwIgLiMBxnkGJM9KSspss4cmhIukoIB9NIGc5pkA9nKIjmJcAwCnhEzQ4sF8YPOp274xEXuLn13TtD4YHMdlqztnfVNH7Do8rAweOzfg2K9M8t-dxi76XgfdmiG4Ctuxqwbnu3iMDqxuojn5uVP0dHO9mN1l88fb-9nVPKsY4UPGARiVdUFLyYxcEspMzSG3ksqyWhZ1IWSZkxy4rYW1iUhKSkas5MmpOJ2i811vH_zbaOKgWhcr0zS6M36MihSC0EKWfIue_UHXfgxd-k4REJRJWnKRKLKjquBjDMaqPrhWh68Eqe3OarezSjur7c5qkzL5LhMT272a8Lv5v9A3EJ9_4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1073483957</pqid></control><display><type>article</type><title>New examples of Willmore submanifolds in the unit sphere via isoparametric functions</title><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Tang, Zizhou ; Yan, Wenjiao</creator><creatorcontrib>Tang, Zizhou ; Yan, Wenjiao</creatorcontrib><description>An isometric immersion is called Willmore if it is an extremal submanifold of the Willmore functional: , where S is the norm square of the second fundamental form and H is the mean curvature. Examples of Willmore submanifolds in the unit sphere are scarce in the literature. This article gives a series of new examples of Willmore submanifolds in the unit sphere via isoparametric functions of FKM-type.</description><identifier>ISSN: 0232-704X</identifier><identifier>EISSN: 1572-9060</identifier><identifier>DOI: 10.1007/s10455-012-9319-z</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Analysis ; Curvature ; Differential Geometry ; Geometry ; Global Analysis and Analysis on Manifolds ; Immersion ; Mathematical analysis ; Mathematical functions ; Mathematical Physics ; Mathematics ; Mathematics and Statistics ; Norms ; Studies ; Topological manifolds</subject><ispartof>Annals of global analysis and geometry, 2012-10, Vol.42 (3), p.403-410</ispartof><rights>Springer Science+Business Media B.V. 2012</rights><rights>Springer Science+Business Media Dordrecht 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-500438d63984e8b134ed502f8389cb6d678921205fd7ffe8b9218841f85789c53</citedby><cites>FETCH-LOGICAL-c415t-500438d63984e8b134ed502f8389cb6d678921205fd7ffe8b9218841f85789c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1073483957/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1073483957?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11679,27915,27916,36051,36052,44354,74656</link.rule.ids></links><search><creatorcontrib>Tang, Zizhou</creatorcontrib><creatorcontrib>Yan, Wenjiao</creatorcontrib><title>New examples of Willmore submanifolds in the unit sphere via isoparametric functions</title><title>Annals of global analysis and geometry</title><addtitle>Ann Glob Anal Geom</addtitle><description>An isometric immersion is called Willmore if it is an extremal submanifold of the Willmore functional: , where S is the norm square of the second fundamental form and H is the mean curvature. Examples of Willmore submanifolds in the unit sphere are scarce in the literature. This article gives a series of new examples of Willmore submanifolds in the unit sphere via isoparametric functions of FKM-type.</description><subject>Analysis</subject><subject>Curvature</subject><subject>Differential Geometry</subject><subject>Geometry</subject><subject>Global Analysis and Analysis on Manifolds</subject><subject>Immersion</subject><subject>Mathematical analysis</subject><subject>Mathematical functions</subject><subject>Mathematical Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Norms</subject><subject>Studies</subject><subject>Topological manifolds</subject><issn>0232-704X</issn><issn>1572-9060</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kEtLxDAUhYMoOI7-AHcBN26qN03SpEsZfMGgmxHdhUybOBnapiatj_n1ZhgXIri6HM53DpeD0CmBCwIgLiMBxnkGJM9KSspss4cmhIukoIB9NIGc5pkA9nKIjmJcAwCnhEzQ4sF8YPOp274xEXuLn13TtD4YHMdlqztnfVNH7Do8rAweOzfg2K9M8t-dxi76XgfdmiG4Ctuxqwbnu3iMDqxuojn5uVP0dHO9mN1l88fb-9nVPKsY4UPGARiVdUFLyYxcEspMzSG3ksqyWhZ1IWSZkxy4rYW1iUhKSkas5MmpOJ2i811vH_zbaOKgWhcr0zS6M36MihSC0EKWfIue_UHXfgxd-k4REJRJWnKRKLKjquBjDMaqPrhWh68Eqe3OarezSjur7c5qkzL5LhMT272a8Lv5v9A3EJ9_4g</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>Tang, Zizhou</creator><creator>Yan, Wenjiao</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20121001</creationdate><title>New examples of Willmore submanifolds in the unit sphere via isoparametric functions</title><author>Tang, Zizhou ; Yan, Wenjiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-500438d63984e8b134ed502f8389cb6d678921205fd7ffe8b9218841f85789c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Analysis</topic><topic>Curvature</topic><topic>Differential Geometry</topic><topic>Geometry</topic><topic>Global Analysis and Analysis on Manifolds</topic><topic>Immersion</topic><topic>Mathematical analysis</topic><topic>Mathematical functions</topic><topic>Mathematical Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Norms</topic><topic>Studies</topic><topic>Topological manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Zizhou</creatorcontrib><creatorcontrib>Yan, Wenjiao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Annals of global analysis and geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Zizhou</au><au>Yan, Wenjiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New examples of Willmore submanifolds in the unit sphere via isoparametric functions</atitle><jtitle>Annals of global analysis and geometry</jtitle><stitle>Ann Glob Anal Geom</stitle><date>2012-10-01</date><risdate>2012</risdate><volume>42</volume><issue>3</issue><spage>403</spage><epage>410</epage><pages>403-410</pages><issn>0232-704X</issn><eissn>1572-9060</eissn><abstract>An isometric immersion is called Willmore if it is an extremal submanifold of the Willmore functional: , where S is the norm square of the second fundamental form and H is the mean curvature. Examples of Willmore submanifolds in the unit sphere are scarce in the literature. This article gives a series of new examples of Willmore submanifolds in the unit sphere via isoparametric functions of FKM-type.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10455-012-9319-z</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0232-704X
ispartof Annals of global analysis and geometry, 2012-10, Vol.42 (3), p.403-410
issn 0232-704X
1572-9060
language eng
recordid cdi_proquest_miscellaneous_1671368955
source ABI/INFORM Global; Springer Nature
subjects Analysis
Curvature
Differential Geometry
Geometry
Global Analysis and Analysis on Manifolds
Immersion
Mathematical analysis
Mathematical functions
Mathematical Physics
Mathematics
Mathematics and Statistics
Norms
Studies
Topological manifolds
title New examples of Willmore submanifolds in the unit sphere via isoparametric functions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A57%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20examples%20of%20Willmore%20submanifolds%20in%20the%20unit%20sphere%20via%20isoparametric%20functions&rft.jtitle=Annals%20of%20global%20analysis%20and%20geometry&rft.au=Tang,%20Zizhou&rft.date=2012-10-01&rft.volume=42&rft.issue=3&rft.spage=403&rft.epage=410&rft.pages=403-410&rft.issn=0232-704X&rft.eissn=1572-9060&rft_id=info:doi/10.1007/s10455-012-9319-z&rft_dat=%3Cproquest_cross%3E2770617431%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c415t-500438d63984e8b134ed502f8389cb6d678921205fd7ffe8b9218841f85789c53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1073483957&rft_id=info:pmid/&rfr_iscdi=true