Loading…
New examples of Willmore submanifolds in the unit sphere via isoparametric functions
An isometric immersion is called Willmore if it is an extremal submanifold of the Willmore functional: , where S is the norm square of the second fundamental form and H is the mean curvature. Examples of Willmore submanifolds in the unit sphere are scarce in the literature. This article gives a seri...
Saved in:
Published in: | Annals of global analysis and geometry 2012-10, Vol.42 (3), p.403-410 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c415t-500438d63984e8b134ed502f8389cb6d678921205fd7ffe8b9218841f85789c53 |
---|---|
cites | cdi_FETCH-LOGICAL-c415t-500438d63984e8b134ed502f8389cb6d678921205fd7ffe8b9218841f85789c53 |
container_end_page | 410 |
container_issue | 3 |
container_start_page | 403 |
container_title | Annals of global analysis and geometry |
container_volume | 42 |
creator | Tang, Zizhou Yan, Wenjiao |
description | An isometric immersion
is called Willmore if it is an extremal submanifold of the Willmore functional:
, where
S
is the norm square of the second fundamental form and
H
is the mean curvature. Examples of Willmore submanifolds in the unit sphere are scarce in the literature. This article gives a series of new examples of Willmore submanifolds in the unit sphere via isoparametric functions of FKM-type. |
doi_str_mv | 10.1007/s10455-012-9319-z |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671368955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2770617431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-500438d63984e8b134ed502f8389cb6d678921205fd7ffe8b9218841f85789c53</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOI7-AHcBN26qN03SpEsZfMGgmxHdhUybOBnapiatj_n1ZhgXIri6HM53DpeD0CmBCwIgLiMBxnkGJM9KSspss4cmhIukoIB9NIGc5pkA9nKIjmJcAwCnhEzQ4sF8YPOp274xEXuLn13TtD4YHMdlqztnfVNH7Do8rAweOzfg2K9M8t-dxi76XgfdmiG4Ctuxqwbnu3iMDqxuojn5uVP0dHO9mN1l88fb-9nVPKsY4UPGARiVdUFLyYxcEspMzSG3ksqyWhZ1IWSZkxy4rYW1iUhKSkas5MmpOJ2i811vH_zbaOKgWhcr0zS6M36MihSC0EKWfIue_UHXfgxd-k4REJRJWnKRKLKjquBjDMaqPrhWh68Eqe3OarezSjur7c5qkzL5LhMT272a8Lv5v9A3EJ9_4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1073483957</pqid></control><display><type>article</type><title>New examples of Willmore submanifolds in the unit sphere via isoparametric functions</title><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Tang, Zizhou ; Yan, Wenjiao</creator><creatorcontrib>Tang, Zizhou ; Yan, Wenjiao</creatorcontrib><description>An isometric immersion
is called Willmore if it is an extremal submanifold of the Willmore functional:
, where
S
is the norm square of the second fundamental form and
H
is the mean curvature. Examples of Willmore submanifolds in the unit sphere are scarce in the literature. This article gives a series of new examples of Willmore submanifolds in the unit sphere via isoparametric functions of FKM-type.</description><identifier>ISSN: 0232-704X</identifier><identifier>EISSN: 1572-9060</identifier><identifier>DOI: 10.1007/s10455-012-9319-z</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Analysis ; Curvature ; Differential Geometry ; Geometry ; Global Analysis and Analysis on Manifolds ; Immersion ; Mathematical analysis ; Mathematical functions ; Mathematical Physics ; Mathematics ; Mathematics and Statistics ; Norms ; Studies ; Topological manifolds</subject><ispartof>Annals of global analysis and geometry, 2012-10, Vol.42 (3), p.403-410</ispartof><rights>Springer Science+Business Media B.V. 2012</rights><rights>Springer Science+Business Media Dordrecht 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-500438d63984e8b134ed502f8389cb6d678921205fd7ffe8b9218841f85789c53</citedby><cites>FETCH-LOGICAL-c415t-500438d63984e8b134ed502f8389cb6d678921205fd7ffe8b9218841f85789c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1073483957/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1073483957?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11679,27915,27916,36051,36052,44354,74656</link.rule.ids></links><search><creatorcontrib>Tang, Zizhou</creatorcontrib><creatorcontrib>Yan, Wenjiao</creatorcontrib><title>New examples of Willmore submanifolds in the unit sphere via isoparametric functions</title><title>Annals of global analysis and geometry</title><addtitle>Ann Glob Anal Geom</addtitle><description>An isometric immersion
is called Willmore if it is an extremal submanifold of the Willmore functional:
, where
S
is the norm square of the second fundamental form and
H
is the mean curvature. Examples of Willmore submanifolds in the unit sphere are scarce in the literature. This article gives a series of new examples of Willmore submanifolds in the unit sphere via isoparametric functions of FKM-type.</description><subject>Analysis</subject><subject>Curvature</subject><subject>Differential Geometry</subject><subject>Geometry</subject><subject>Global Analysis and Analysis on Manifolds</subject><subject>Immersion</subject><subject>Mathematical analysis</subject><subject>Mathematical functions</subject><subject>Mathematical Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Norms</subject><subject>Studies</subject><subject>Topological manifolds</subject><issn>0232-704X</issn><issn>1572-9060</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kEtLxDAUhYMoOI7-AHcBN26qN03SpEsZfMGgmxHdhUybOBnapiatj_n1ZhgXIri6HM53DpeD0CmBCwIgLiMBxnkGJM9KSspss4cmhIukoIB9NIGc5pkA9nKIjmJcAwCnhEzQ4sF8YPOp274xEXuLn13TtD4YHMdlqztnfVNH7Do8rAweOzfg2K9M8t-dxi76XgfdmiG4Ctuxqwbnu3iMDqxuojn5uVP0dHO9mN1l88fb-9nVPKsY4UPGARiVdUFLyYxcEspMzSG3ksqyWhZ1IWSZkxy4rYW1iUhKSkas5MmpOJ2i811vH_zbaOKgWhcr0zS6M36MihSC0EKWfIue_UHXfgxd-k4REJRJWnKRKLKjquBjDMaqPrhWh68Eqe3OarezSjur7c5qkzL5LhMT272a8Lv5v9A3EJ9_4g</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>Tang, Zizhou</creator><creator>Yan, Wenjiao</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20121001</creationdate><title>New examples of Willmore submanifolds in the unit sphere via isoparametric functions</title><author>Tang, Zizhou ; Yan, Wenjiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-500438d63984e8b134ed502f8389cb6d678921205fd7ffe8b9218841f85789c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Analysis</topic><topic>Curvature</topic><topic>Differential Geometry</topic><topic>Geometry</topic><topic>Global Analysis and Analysis on Manifolds</topic><topic>Immersion</topic><topic>Mathematical analysis</topic><topic>Mathematical functions</topic><topic>Mathematical Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Norms</topic><topic>Studies</topic><topic>Topological manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Zizhou</creatorcontrib><creatorcontrib>Yan, Wenjiao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Annals of global analysis and geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Zizhou</au><au>Yan, Wenjiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New examples of Willmore submanifolds in the unit sphere via isoparametric functions</atitle><jtitle>Annals of global analysis and geometry</jtitle><stitle>Ann Glob Anal Geom</stitle><date>2012-10-01</date><risdate>2012</risdate><volume>42</volume><issue>3</issue><spage>403</spage><epage>410</epage><pages>403-410</pages><issn>0232-704X</issn><eissn>1572-9060</eissn><abstract>An isometric immersion
is called Willmore if it is an extremal submanifold of the Willmore functional:
, where
S
is the norm square of the second fundamental form and
H
is the mean curvature. Examples of Willmore submanifolds in the unit sphere are scarce in the literature. This article gives a series of new examples of Willmore submanifolds in the unit sphere via isoparametric functions of FKM-type.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10455-012-9319-z</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0232-704X |
ispartof | Annals of global analysis and geometry, 2012-10, Vol.42 (3), p.403-410 |
issn | 0232-704X 1572-9060 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671368955 |
source | ABI/INFORM Global; Springer Nature |
subjects | Analysis Curvature Differential Geometry Geometry Global Analysis and Analysis on Manifolds Immersion Mathematical analysis Mathematical functions Mathematical Physics Mathematics Mathematics and Statistics Norms Studies Topological manifolds |
title | New examples of Willmore submanifolds in the unit sphere via isoparametric functions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A57%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20examples%20of%20Willmore%20submanifolds%20in%20the%20unit%20sphere%20via%20isoparametric%20functions&rft.jtitle=Annals%20of%20global%20analysis%20and%20geometry&rft.au=Tang,%20Zizhou&rft.date=2012-10-01&rft.volume=42&rft.issue=3&rft.spage=403&rft.epage=410&rft.pages=403-410&rft.issn=0232-704X&rft.eissn=1572-9060&rft_id=info:doi/10.1007/s10455-012-9319-z&rft_dat=%3Cproquest_cross%3E2770617431%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c415t-500438d63984e8b134ed502f8389cb6d678921205fd7ffe8b9218841f85789c53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1073483957&rft_id=info:pmid/&rfr_iscdi=true |