Loading…

control of fractional linear systems

In this paper, the standard H a control problem for continuous-time fractional linear time-invariant single-inputasingle-output systems is solved. The adopted approach consists of extending to the fractional case the procedure followed within the classical solution for the integer case. According to...

Full description

Saved in:
Bibliographic Details
Published in:Automatica (Oxford) 2013-07, Vol.49 (7), p.2276-2280
Main Authors: Padula, Fabrizio, Alcántara, Salvador, Vilanova, Ramon, Visioli, Antonio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1378-521b47643ebc5a3725498225ed0bbdbd98c1b69e9cef9b2d494bbc8843d173343
cites cdi_FETCH-LOGICAL-c1378-521b47643ebc5a3725498225ed0bbdbd98c1b69e9cef9b2d494bbc8843d173343
container_end_page 2280
container_issue 7
container_start_page 2276
container_title Automatica (Oxford)
container_volume 49
creator Padula, Fabrizio
Alcántara, Salvador
Vilanova, Ramon
Visioli, Antonio
description In this paper, the standard H a control problem for continuous-time fractional linear time-invariant single-inputasingle-output systems is solved. The adopted approach consists of extending to the fractional case the procedure followed within the classical solution for the integer case. According to the classical route, we first consider the generalization to fractional systems of the standard Youla parameterization of all the stabilizing controllers. The H a optimal controller is then found among the class of stabilizing controllers, recasting the control problem into a model-matching one. The results obtained naturally extend well-established results to a fractional setting, including both the commensurate and noncommensurate case, thus providing a framework where H a design can be recast along the well-known and fruitful lines of the integer case. A worked-through example is discussed in detail to illustrate the design procedure.
doi_str_mv 10.1016/j.automatica.2013.04.012
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671369978</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671369978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1378-521b47643ebc5a3725498225ed0bbdbd98c1b69e9cef9b2d494bbc8843d173343</originalsourceid><addsrcrecordid>eNpF0L1qwzAUBWANLTRN-w4eOnSxe68kW9JYQv8g0KWdhSTLYCNbqSQPefsmpNDpcOBwho-QCqFBwO5pasxa4mzK6ExDAVkDvAGkV2QDAG2NoOQNuc15OlWOkm7Ig4tLSTFUcaiGZFwZ42JCFcbFm1TlYy5-znfkejAh-_u_3JLv15ev3Xu9_3z72D3va4dMyLqlaLnoOPPWtYYJ2nIlKW19D9b2tlfSoe2UV84PytKeK26tk5KzHgVjnG3J4-X3kOLP6nPR85idD8EsPq5ZYyeQdUoJeZrKy9SlmHPygz6kcTbpqBH0GUNP-h9DnzE0cH3CYL_fNFeq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671369978</pqid></control><display><type>article</type><title>control of fractional linear systems</title><source>Elsevier</source><creator>Padula, Fabrizio ; Alcántara, Salvador ; Vilanova, Ramon ; Visioli, Antonio</creator><creatorcontrib>Padula, Fabrizio ; Alcántara, Salvador ; Vilanova, Ramon ; Visioli, Antonio</creatorcontrib><description>In this paper, the standard H a control problem for continuous-time fractional linear time-invariant single-inputasingle-output systems is solved. The adopted approach consists of extending to the fractional case the procedure followed within the classical solution for the integer case. According to the classical route, we first consider the generalization to fractional systems of the standard Youla parameterization of all the stabilizing controllers. The H a optimal controller is then found among the class of stabilizing controllers, recasting the control problem into a model-matching one. The results obtained naturally extend well-established results to a fractional setting, including both the commensurate and noncommensurate case, thus providing a framework where H a design can be recast along the well-known and fruitful lines of the integer case. A worked-through example is discussed in detail to illustrate the design procedure.</description><identifier>ISSN: 0005-1098</identifier><identifier>DOI: 10.1016/j.automatica.2013.04.012</identifier><language>eng</language><subject>Control systems ; Controllers ; Design engineering ; Integers ; Linear systems ; Optimization ; Parametrization</subject><ispartof>Automatica (Oxford), 2013-07, Vol.49 (7), p.2276-2280</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1378-521b47643ebc5a3725498225ed0bbdbd98c1b69e9cef9b2d494bbc8843d173343</citedby><cites>FETCH-LOGICAL-c1378-521b47643ebc5a3725498225ed0bbdbd98c1b69e9cef9b2d494bbc8843d173343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Padula, Fabrizio</creatorcontrib><creatorcontrib>Alcántara, Salvador</creatorcontrib><creatorcontrib>Vilanova, Ramon</creatorcontrib><creatorcontrib>Visioli, Antonio</creatorcontrib><title>control of fractional linear systems</title><title>Automatica (Oxford)</title><description>In this paper, the standard H a control problem for continuous-time fractional linear time-invariant single-inputasingle-output systems is solved. The adopted approach consists of extending to the fractional case the procedure followed within the classical solution for the integer case. According to the classical route, we first consider the generalization to fractional systems of the standard Youla parameterization of all the stabilizing controllers. The H a optimal controller is then found among the class of stabilizing controllers, recasting the control problem into a model-matching one. The results obtained naturally extend well-established results to a fractional setting, including both the commensurate and noncommensurate case, thus providing a framework where H a design can be recast along the well-known and fruitful lines of the integer case. A worked-through example is discussed in detail to illustrate the design procedure.</description><subject>Control systems</subject><subject>Controllers</subject><subject>Design engineering</subject><subject>Integers</subject><subject>Linear systems</subject><subject>Optimization</subject><subject>Parametrization</subject><issn>0005-1098</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpF0L1qwzAUBWANLTRN-w4eOnSxe68kW9JYQv8g0KWdhSTLYCNbqSQPefsmpNDpcOBwho-QCqFBwO5pasxa4mzK6ExDAVkDvAGkV2QDAG2NoOQNuc15OlWOkm7Ig4tLSTFUcaiGZFwZ42JCFcbFm1TlYy5-znfkejAh-_u_3JLv15ev3Xu9_3z72D3va4dMyLqlaLnoOPPWtYYJ2nIlKW19D9b2tlfSoe2UV84PytKeK26tk5KzHgVjnG3J4-X3kOLP6nPR85idD8EsPq5ZYyeQdUoJeZrKy9SlmHPygz6kcTbpqBH0GUNP-h9DnzE0cH3CYL_fNFeq</recordid><startdate>201307</startdate><enddate>201307</enddate><creator>Padula, Fabrizio</creator><creator>Alcántara, Salvador</creator><creator>Vilanova, Ramon</creator><creator>Visioli, Antonio</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201307</creationdate><title>control of fractional linear systems</title><author>Padula, Fabrizio ; Alcántara, Salvador ; Vilanova, Ramon ; Visioli, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1378-521b47643ebc5a3725498225ed0bbdbd98c1b69e9cef9b2d494bbc8843d173343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Control systems</topic><topic>Controllers</topic><topic>Design engineering</topic><topic>Integers</topic><topic>Linear systems</topic><topic>Optimization</topic><topic>Parametrization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Padula, Fabrizio</creatorcontrib><creatorcontrib>Alcántara, Salvador</creatorcontrib><creatorcontrib>Vilanova, Ramon</creatorcontrib><creatorcontrib>Visioli, Antonio</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Automatica (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Padula, Fabrizio</au><au>Alcántara, Salvador</au><au>Vilanova, Ramon</au><au>Visioli, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>control of fractional linear systems</atitle><jtitle>Automatica (Oxford)</jtitle><date>2013-07</date><risdate>2013</risdate><volume>49</volume><issue>7</issue><spage>2276</spage><epage>2280</epage><pages>2276-2280</pages><issn>0005-1098</issn><abstract>In this paper, the standard H a control problem for continuous-time fractional linear time-invariant single-inputasingle-output systems is solved. The adopted approach consists of extending to the fractional case the procedure followed within the classical solution for the integer case. According to the classical route, we first consider the generalization to fractional systems of the standard Youla parameterization of all the stabilizing controllers. The H a optimal controller is then found among the class of stabilizing controllers, recasting the control problem into a model-matching one. The results obtained naturally extend well-established results to a fractional setting, including both the commensurate and noncommensurate case, thus providing a framework where H a design can be recast along the well-known and fruitful lines of the integer case. A worked-through example is discussed in detail to illustrate the design procedure.</abstract><doi>10.1016/j.automatica.2013.04.012</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0005-1098
ispartof Automatica (Oxford), 2013-07, Vol.49 (7), p.2276-2280
issn 0005-1098
language eng
recordid cdi_proquest_miscellaneous_1671369978
source Elsevier
subjects Control systems
Controllers
Design engineering
Integers
Linear systems
Optimization
Parametrization
title control of fractional linear systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T20%3A29%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=control%20of%20fractional%20linear%20systems&rft.jtitle=Automatica%20(Oxford)&rft.au=Padula,%20Fabrizio&rft.date=2013-07&rft.volume=49&rft.issue=7&rft.spage=2276&rft.epage=2280&rft.pages=2276-2280&rft.issn=0005-1098&rft_id=info:doi/10.1016/j.automatica.2013.04.012&rft_dat=%3Cproquest_cross%3E1671369978%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1378-521b47643ebc5a3725498225ed0bbdbd98c1b69e9cef9b2d494bbc8843d173343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671369978&rft_id=info:pmid/&rfr_iscdi=true