Loading…
control of fractional linear systems
In this paper, the standard H a control problem for continuous-time fractional linear time-invariant single-inputasingle-output systems is solved. The adopted approach consists of extending to the fractional case the procedure followed within the classical solution for the integer case. According to...
Saved in:
Published in: | Automatica (Oxford) 2013-07, Vol.49 (7), p.2276-2280 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c1378-521b47643ebc5a3725498225ed0bbdbd98c1b69e9cef9b2d494bbc8843d173343 |
---|---|
cites | cdi_FETCH-LOGICAL-c1378-521b47643ebc5a3725498225ed0bbdbd98c1b69e9cef9b2d494bbc8843d173343 |
container_end_page | 2280 |
container_issue | 7 |
container_start_page | 2276 |
container_title | Automatica (Oxford) |
container_volume | 49 |
creator | Padula, Fabrizio Alcántara, Salvador Vilanova, Ramon Visioli, Antonio |
description | In this paper, the standard H a control problem for continuous-time fractional linear time-invariant single-inputasingle-output systems is solved. The adopted approach consists of extending to the fractional case the procedure followed within the classical solution for the integer case. According to the classical route, we first consider the generalization to fractional systems of the standard Youla parameterization of all the stabilizing controllers. The H a optimal controller is then found among the class of stabilizing controllers, recasting the control problem into a model-matching one. The results obtained naturally extend well-established results to a fractional setting, including both the commensurate and noncommensurate case, thus providing a framework where H a design can be recast along the well-known and fruitful lines of the integer case. A worked-through example is discussed in detail to illustrate the design procedure. |
doi_str_mv | 10.1016/j.automatica.2013.04.012 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671369978</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671369978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1378-521b47643ebc5a3725498225ed0bbdbd98c1b69e9cef9b2d494bbc8843d173343</originalsourceid><addsrcrecordid>eNpF0L1qwzAUBWANLTRN-w4eOnSxe68kW9JYQv8g0KWdhSTLYCNbqSQPefsmpNDpcOBwho-QCqFBwO5pasxa4mzK6ExDAVkDvAGkV2QDAG2NoOQNuc15OlWOkm7Ig4tLSTFUcaiGZFwZ42JCFcbFm1TlYy5-znfkejAh-_u_3JLv15ev3Xu9_3z72D3va4dMyLqlaLnoOPPWtYYJ2nIlKW19D9b2tlfSoe2UV84PytKeK26tk5KzHgVjnG3J4-X3kOLP6nPR85idD8EsPq5ZYyeQdUoJeZrKy9SlmHPygz6kcTbpqBH0GUNP-h9DnzE0cH3CYL_fNFeq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671369978</pqid></control><display><type>article</type><title>control of fractional linear systems</title><source>Elsevier</source><creator>Padula, Fabrizio ; Alcántara, Salvador ; Vilanova, Ramon ; Visioli, Antonio</creator><creatorcontrib>Padula, Fabrizio ; Alcántara, Salvador ; Vilanova, Ramon ; Visioli, Antonio</creatorcontrib><description>In this paper, the standard H a control problem for continuous-time fractional linear time-invariant single-inputasingle-output systems is solved. The adopted approach consists of extending to the fractional case the procedure followed within the classical solution for the integer case. According to the classical route, we first consider the generalization to fractional systems of the standard Youla parameterization of all the stabilizing controllers. The H a optimal controller is then found among the class of stabilizing controllers, recasting the control problem into a model-matching one. The results obtained naturally extend well-established results to a fractional setting, including both the commensurate and noncommensurate case, thus providing a framework where H a design can be recast along the well-known and fruitful lines of the integer case. A worked-through example is discussed in detail to illustrate the design procedure.</description><identifier>ISSN: 0005-1098</identifier><identifier>DOI: 10.1016/j.automatica.2013.04.012</identifier><language>eng</language><subject>Control systems ; Controllers ; Design engineering ; Integers ; Linear systems ; Optimization ; Parametrization</subject><ispartof>Automatica (Oxford), 2013-07, Vol.49 (7), p.2276-2280</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1378-521b47643ebc5a3725498225ed0bbdbd98c1b69e9cef9b2d494bbc8843d173343</citedby><cites>FETCH-LOGICAL-c1378-521b47643ebc5a3725498225ed0bbdbd98c1b69e9cef9b2d494bbc8843d173343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Padula, Fabrizio</creatorcontrib><creatorcontrib>Alcántara, Salvador</creatorcontrib><creatorcontrib>Vilanova, Ramon</creatorcontrib><creatorcontrib>Visioli, Antonio</creatorcontrib><title>control of fractional linear systems</title><title>Automatica (Oxford)</title><description>In this paper, the standard H a control problem for continuous-time fractional linear time-invariant single-inputasingle-output systems is solved. The adopted approach consists of extending to the fractional case the procedure followed within the classical solution for the integer case. According to the classical route, we first consider the generalization to fractional systems of the standard Youla parameterization of all the stabilizing controllers. The H a optimal controller is then found among the class of stabilizing controllers, recasting the control problem into a model-matching one. The results obtained naturally extend well-established results to a fractional setting, including both the commensurate and noncommensurate case, thus providing a framework where H a design can be recast along the well-known and fruitful lines of the integer case. A worked-through example is discussed in detail to illustrate the design procedure.</description><subject>Control systems</subject><subject>Controllers</subject><subject>Design engineering</subject><subject>Integers</subject><subject>Linear systems</subject><subject>Optimization</subject><subject>Parametrization</subject><issn>0005-1098</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpF0L1qwzAUBWANLTRN-w4eOnSxe68kW9JYQv8g0KWdhSTLYCNbqSQPefsmpNDpcOBwho-QCqFBwO5pasxa4mzK6ExDAVkDvAGkV2QDAG2NoOQNuc15OlWOkm7Ig4tLSTFUcaiGZFwZ42JCFcbFm1TlYy5-znfkejAh-_u_3JLv15ev3Xu9_3z72D3va4dMyLqlaLnoOPPWtYYJ2nIlKW19D9b2tlfSoe2UV84PytKeK26tk5KzHgVjnG3J4-X3kOLP6nPR85idD8EsPq5ZYyeQdUoJeZrKy9SlmHPygz6kcTbpqBH0GUNP-h9DnzE0cH3CYL_fNFeq</recordid><startdate>201307</startdate><enddate>201307</enddate><creator>Padula, Fabrizio</creator><creator>Alcántara, Salvador</creator><creator>Vilanova, Ramon</creator><creator>Visioli, Antonio</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201307</creationdate><title>control of fractional linear systems</title><author>Padula, Fabrizio ; Alcántara, Salvador ; Vilanova, Ramon ; Visioli, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1378-521b47643ebc5a3725498225ed0bbdbd98c1b69e9cef9b2d494bbc8843d173343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Control systems</topic><topic>Controllers</topic><topic>Design engineering</topic><topic>Integers</topic><topic>Linear systems</topic><topic>Optimization</topic><topic>Parametrization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Padula, Fabrizio</creatorcontrib><creatorcontrib>Alcántara, Salvador</creatorcontrib><creatorcontrib>Vilanova, Ramon</creatorcontrib><creatorcontrib>Visioli, Antonio</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Automatica (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Padula, Fabrizio</au><au>Alcántara, Salvador</au><au>Vilanova, Ramon</au><au>Visioli, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>control of fractional linear systems</atitle><jtitle>Automatica (Oxford)</jtitle><date>2013-07</date><risdate>2013</risdate><volume>49</volume><issue>7</issue><spage>2276</spage><epage>2280</epage><pages>2276-2280</pages><issn>0005-1098</issn><abstract>In this paper, the standard H a control problem for continuous-time fractional linear time-invariant single-inputasingle-output systems is solved. The adopted approach consists of extending to the fractional case the procedure followed within the classical solution for the integer case. According to the classical route, we first consider the generalization to fractional systems of the standard Youla parameterization of all the stabilizing controllers. The H a optimal controller is then found among the class of stabilizing controllers, recasting the control problem into a model-matching one. The results obtained naturally extend well-established results to a fractional setting, including both the commensurate and noncommensurate case, thus providing a framework where H a design can be recast along the well-known and fruitful lines of the integer case. A worked-through example is discussed in detail to illustrate the design procedure.</abstract><doi>10.1016/j.automatica.2013.04.012</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0005-1098 |
ispartof | Automatica (Oxford), 2013-07, Vol.49 (7), p.2276-2280 |
issn | 0005-1098 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671369978 |
source | Elsevier |
subjects | Control systems Controllers Design engineering Integers Linear systems Optimization Parametrization |
title | control of fractional linear systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T20%3A29%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=control%20of%20fractional%20linear%20systems&rft.jtitle=Automatica%20(Oxford)&rft.au=Padula,%20Fabrizio&rft.date=2013-07&rft.volume=49&rft.issue=7&rft.spage=2276&rft.epage=2280&rft.pages=2276-2280&rft.issn=0005-1098&rft_id=info:doi/10.1016/j.automatica.2013.04.012&rft_dat=%3Cproquest_cross%3E1671369978%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1378-521b47643ebc5a3725498225ed0bbdbd98c1b69e9cef9b2d494bbc8843d173343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671369978&rft_id=info:pmid/&rfr_iscdi=true |