Loading…
Operational Characteristics of the 200-m Flexible Cryogenic Transfer System
A proper cryogenic environment is essential for the operation of superconducting devices. A test area for the superconducting radio-frequency modules (SRF) has been established in the RF laboratory at National Synchrotron Radiation Research Center in Taiwan; these modules require much liquid helium...
Saved in:
Published in: | Journal of superconductivity and novel magnetism 2013-05, Vol.26 (5), p.1479-1483 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A proper cryogenic environment is essential for the operation of superconducting devices. A test area for the superconducting radio-frequency modules (SRF) has been established in the RF laboratory at National Synchrotron Radiation Research Center in Taiwan; these modules require much liquid helium during conditioning and performance tests; a cooling capacity of 120 W is expected for the acceptance test of the SRF module. The cryogenic environment of the test area is completed on transferring the liquid helium over a remarkable length of 205 m from the two cryogenic plants at Taiwan Light Source, with a valve box located at each end to control and to measure the cryogenic flow. Flexible cryogenic transfer lines of concentric four-tube type are chosen for both the supply of liquid helium and the return of cold helium gas. Functional examination of this long transfer system was first achieved with a 500-L Dewar in the radio-frequency laboratory; an SRF module was then installed in the test area for practical operation. The primary concern about the cryogenic transfer system is the heat loss; a measurement technique based on the principle of thermodynamics is developed and proposed herein. With the available sensors inside the valve boxes and the heaters inside the 500-L Dewar and the test SRF module, this technique has proved promissing from the measured results. |
---|---|
ISSN: | 1557-1939 1557-1947 |
DOI: | 10.1007/s10948-012-2035-x |