Loading…

Evolution of a martensitic structure in a Cu–Al alloy during processing by high-pressure torsion

A Cu-11.8 wt% Al alloy was quenched in iced water from a high temperature (850 °C) to introduce a martensitic phase and then the alloy was processed using quasi-constrained high-pressure torsion (HPT). The micro-hardness and the microstructures of the unprocessed and severely deformed materials were...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science 2013-07, Vol.48 (13), p.4613-4619
Main Authors: Zhang, G. F., Sauvage, X., Wang, J. T., Gao, N., Langdon, T. G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c488t-beefd8b0b8314d6e71fba932db6cce1c32f492dcbc87716ce70d02f2d5812ec73
cites cdi_FETCH-LOGICAL-c488t-beefd8b0b8314d6e71fba932db6cce1c32f492dcbc87716ce70d02f2d5812ec73
container_end_page 4619
container_issue 13
container_start_page 4613
container_title Journal of materials science
container_volume 48
creator Zhang, G. F.
Sauvage, X.
Wang, J. T.
Gao, N.
Langdon, T. G.
description A Cu-11.8 wt% Al alloy was quenched in iced water from a high temperature (850 °C) to introduce a martensitic phase and then the alloy was processed using quasi-constrained high-pressure torsion (HPT). The micro-hardness and the microstructures of the unprocessed and severely deformed materials were investigated using a wide range of experimental techniques (X-ray diffraction, optical microscopy, scanning electron microscopy, transmission electron microscopy, and high- resolution TEM). During HPT, a stress-induced martensite–martensite transformation occurs and an martensite phase is formed. In the deformed material, there are nanoscale deformation bands having high densities of defects and twins in the martensite. It was observed that a high density of dislocations became pinned and accumulated in the vicinity of twin boundaries, thereby demonstrating a strong interaction between twin boundaries and dislocations during the HPT process.
doi_str_mv 10.1007/s10853-013-7153-8
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671371236</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A373747604</galeid><sourcerecordid>A373747604</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-beefd8b0b8314d6e71fba932db6cce1c32f492dcbc87716ce70d02f2d5812ec73</originalsourceid><addsrcrecordid>eNp1kd9qFDEUxoNYcN36AN4FvNGLqfk3k-zlslRbKAitXodM5mSbMjtZ80e6d76Db-iTNMMIUkFykcM5v-_wcT6E3lJyQQmRHxMlquUNobyRtBbqBVrRVvJGKMJfohUhjDVMdPQVep3SAyGklYyuUH_5I4wl-zDh4LDBBxMzTMlnb3HKsdhcImA_1dGu_P75aztiM47hhIcS_bTHxxgspDSX_Qnf-_19c4y1MatyiKkuPkdnzowJ3vz51-jbp8uvu6vm5svn6932prFCqdz0AG5QPekVp2LoQFLXmw1nQ99ZC9Ry5sSGDba3SkraWZBkIMyxoVWUgZV8jd4ve6un7wVS1gefLIyjmSCUpGknKZeU8a6i7_5BH0KJU3WnGWs3kglR2TW6WKi9GUH7yYUcja1vgIO3YQLna3_LJZdCdkRUwYdngspkeMx7U1LS13e3z1m6sDaGlCI4fYy-Xv-kKdFzpHqJVNdI9RypVlXDFk06zseH-Nf2_0VPOiqkmA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259724471</pqid></control><display><type>article</type><title>Evolution of a martensitic structure in a Cu–Al alloy during processing by high-pressure torsion</title><source>Springer Link</source><creator>Zhang, G. F. ; Sauvage, X. ; Wang, J. T. ; Gao, N. ; Langdon, T. G.</creator><creatorcontrib>Zhang, G. F. ; Sauvage, X. ; Wang, J. T. ; Gao, N. ; Langdon, T. G.</creatorcontrib><description>A Cu-11.8 wt% Al alloy was quenched in iced water from a high temperature (850 °C) to introduce a martensitic phase and then the alloy was processed using quasi-constrained high-pressure torsion (HPT). The micro-hardness and the microstructures of the unprocessed and severely deformed materials were investigated using a wide range of experimental techniques (X-ray diffraction, optical microscopy, scanning electron microscopy, transmission electron microscopy, and high- resolution TEM). During HPT, a stress-induced martensite–martensite transformation occurs and an martensite phase is formed. In the deformed material, there are nanoscale deformation bands having high densities of defects and twins in the martensite. It was observed that a high density of dislocations became pinned and accumulated in the vicinity of twin boundaries, thereby demonstrating a strong interaction between twin boundaries and dislocations during the HPT process.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-013-7153-8</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Alloys ; Aluminum base alloys ; BOUNDARIES ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Copper ; COPPER ALLOYS (40 TO 99.3 CU) ; COPPER ALUMINUM ALLOYS ; Copper base alloys ; Crystallography and Scattering Methods ; DEFORMATION ; DENSITY ; Diffraction ; Dislocation density ; Dislocation pinning ; Dislocations ; Heat treating ; High density ; High temperature ; MARTENSITE ; Martensitic transformations ; Materials Science ; Microhardness ; Microscopy ; MICROSTRUCTURES ; Nanostructure ; Nanostructured Materials ; Optical microscopy ; Polymer Sciences ; Scanning electron microscopy ; Solid Mechanics ; Strong interactions (field theory) ; Torsion ; Transmission electron microscopy ; TWIN BOUNDARIES ; Twinning (Crystallography) ; Twins ; X-rays</subject><ispartof>Journal of materials science, 2013-07, Vol.48 (13), p.4613-4619</ispartof><rights>Springer Science+Business Media New York 2013</rights><rights>COPYRIGHT 2013 Springer</rights><rights>Journal of Materials Science is a copyright of Springer, (2013). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-beefd8b0b8314d6e71fba932db6cce1c32f492dcbc87716ce70d02f2d5812ec73</citedby><cites>FETCH-LOGICAL-c488t-beefd8b0b8314d6e71fba932db6cce1c32f492dcbc87716ce70d02f2d5812ec73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Zhang, G. F.</creatorcontrib><creatorcontrib>Sauvage, X.</creatorcontrib><creatorcontrib>Wang, J. T.</creatorcontrib><creatorcontrib>Gao, N.</creatorcontrib><creatorcontrib>Langdon, T. G.</creatorcontrib><title>Evolution of a martensitic structure in a Cu–Al alloy during processing by high-pressure torsion</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>A Cu-11.8 wt% Al alloy was quenched in iced water from a high temperature (850 °C) to introduce a martensitic phase and then the alloy was processed using quasi-constrained high-pressure torsion (HPT). The micro-hardness and the microstructures of the unprocessed and severely deformed materials were investigated using a wide range of experimental techniques (X-ray diffraction, optical microscopy, scanning electron microscopy, transmission electron microscopy, and high- resolution TEM). During HPT, a stress-induced martensite–martensite transformation occurs and an martensite phase is formed. In the deformed material, there are nanoscale deformation bands having high densities of defects and twins in the martensite. It was observed that a high density of dislocations became pinned and accumulated in the vicinity of twin boundaries, thereby demonstrating a strong interaction between twin boundaries and dislocations during the HPT process.</description><subject>Alloys</subject><subject>Aluminum base alloys</subject><subject>BOUNDARIES</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Copper</subject><subject>COPPER ALLOYS (40 TO 99.3 CU)</subject><subject>COPPER ALUMINUM ALLOYS</subject><subject>Copper base alloys</subject><subject>Crystallography and Scattering Methods</subject><subject>DEFORMATION</subject><subject>DENSITY</subject><subject>Diffraction</subject><subject>Dislocation density</subject><subject>Dislocation pinning</subject><subject>Dislocations</subject><subject>Heat treating</subject><subject>High density</subject><subject>High temperature</subject><subject>MARTENSITE</subject><subject>Martensitic transformations</subject><subject>Materials Science</subject><subject>Microhardness</subject><subject>Microscopy</subject><subject>MICROSTRUCTURES</subject><subject>Nanostructure</subject><subject>Nanostructured Materials</subject><subject>Optical microscopy</subject><subject>Polymer Sciences</subject><subject>Scanning electron microscopy</subject><subject>Solid Mechanics</subject><subject>Strong interactions (field theory)</subject><subject>Torsion</subject><subject>Transmission electron microscopy</subject><subject>TWIN BOUNDARIES</subject><subject>Twinning (Crystallography)</subject><subject>Twins</subject><subject>X-rays</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kd9qFDEUxoNYcN36AN4FvNGLqfk3k-zlslRbKAitXodM5mSbMjtZ80e6d76Db-iTNMMIUkFykcM5v-_wcT6E3lJyQQmRHxMlquUNobyRtBbqBVrRVvJGKMJfohUhjDVMdPQVep3SAyGklYyuUH_5I4wl-zDh4LDBBxMzTMlnb3HKsdhcImA_1dGu_P75aztiM47hhIcS_bTHxxgspDSX_Qnf-_19c4y1MatyiKkuPkdnzowJ3vz51-jbp8uvu6vm5svn6932prFCqdz0AG5QPekVp2LoQFLXmw1nQ99ZC9Ry5sSGDba3SkraWZBkIMyxoVWUgZV8jd4ve6un7wVS1gefLIyjmSCUpGknKZeU8a6i7_5BH0KJU3WnGWs3kglR2TW6WKi9GUH7yYUcja1vgIO3YQLna3_LJZdCdkRUwYdngspkeMx7U1LS13e3z1m6sDaGlCI4fYy-Xv-kKdFzpHqJVNdI9RypVlXDFk06zseH-Nf2_0VPOiqkmA</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Zhang, G. F.</creator><creator>Sauvage, X.</creator><creator>Wang, J. T.</creator><creator>Gao, N.</creator><creator>Langdon, T. G.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7QF</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8G</scope><scope>JG9</scope></search><sort><creationdate>20130701</creationdate><title>Evolution of a martensitic structure in a Cu–Al alloy during processing by high-pressure torsion</title><author>Zhang, G. F. ; Sauvage, X. ; Wang, J. T. ; Gao, N. ; Langdon, T. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-beefd8b0b8314d6e71fba932db6cce1c32f492dcbc87716ce70d02f2d5812ec73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Alloys</topic><topic>Aluminum base alloys</topic><topic>BOUNDARIES</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Copper</topic><topic>COPPER ALLOYS (40 TO 99.3 CU)</topic><topic>COPPER ALUMINUM ALLOYS</topic><topic>Copper base alloys</topic><topic>Crystallography and Scattering Methods</topic><topic>DEFORMATION</topic><topic>DENSITY</topic><topic>Diffraction</topic><topic>Dislocation density</topic><topic>Dislocation pinning</topic><topic>Dislocations</topic><topic>Heat treating</topic><topic>High density</topic><topic>High temperature</topic><topic>MARTENSITE</topic><topic>Martensitic transformations</topic><topic>Materials Science</topic><topic>Microhardness</topic><topic>Microscopy</topic><topic>MICROSTRUCTURES</topic><topic>Nanostructure</topic><topic>Nanostructured Materials</topic><topic>Optical microscopy</topic><topic>Polymer Sciences</topic><topic>Scanning electron microscopy</topic><topic>Solid Mechanics</topic><topic>Strong interactions (field theory)</topic><topic>Torsion</topic><topic>Transmission electron microscopy</topic><topic>TWIN BOUNDARIES</topic><topic>Twinning (Crystallography)</topic><topic>Twins</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, G. F.</creatorcontrib><creatorcontrib>Sauvage, X.</creatorcontrib><creatorcontrib>Wang, J. T.</creatorcontrib><creatorcontrib>Gao, N.</creatorcontrib><creatorcontrib>Langdon, T. G.</creatorcontrib><collection>CrossRef</collection><collection>Science In Context</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, G. F.</au><au>Sauvage, X.</au><au>Wang, J. T.</au><au>Gao, N.</au><au>Langdon, T. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of a martensitic structure in a Cu–Al alloy during processing by high-pressure torsion</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2013-07-01</date><risdate>2013</risdate><volume>48</volume><issue>13</issue><spage>4613</spage><epage>4619</epage><pages>4613-4619</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>A Cu-11.8 wt% Al alloy was quenched in iced water from a high temperature (850 °C) to introduce a martensitic phase and then the alloy was processed using quasi-constrained high-pressure torsion (HPT). The micro-hardness and the microstructures of the unprocessed and severely deformed materials were investigated using a wide range of experimental techniques (X-ray diffraction, optical microscopy, scanning electron microscopy, transmission electron microscopy, and high- resolution TEM). During HPT, a stress-induced martensite–martensite transformation occurs and an martensite phase is formed. In the deformed material, there are nanoscale deformation bands having high densities of defects and twins in the martensite. It was observed that a high density of dislocations became pinned and accumulated in the vicinity of twin boundaries, thereby demonstrating a strong interaction between twin boundaries and dislocations during the HPT process.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10853-013-7153-8</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2013-07, Vol.48 (13), p.4613-4619
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_miscellaneous_1671371236
source Springer Link
subjects Alloys
Aluminum base alloys
BOUNDARIES
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Copper
COPPER ALLOYS (40 TO 99.3 CU)
COPPER ALUMINUM ALLOYS
Copper base alloys
Crystallography and Scattering Methods
DEFORMATION
DENSITY
Diffraction
Dislocation density
Dislocation pinning
Dislocations
Heat treating
High density
High temperature
MARTENSITE
Martensitic transformations
Materials Science
Microhardness
Microscopy
MICROSTRUCTURES
Nanostructure
Nanostructured Materials
Optical microscopy
Polymer Sciences
Scanning electron microscopy
Solid Mechanics
Strong interactions (field theory)
Torsion
Transmission electron microscopy
TWIN BOUNDARIES
Twinning (Crystallography)
Twins
X-rays
title Evolution of a martensitic structure in a Cu–Al alloy during processing by high-pressure torsion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A44%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20a%20martensitic%20structure%20in%20a%20Cu%E2%80%93Al%20alloy%20during%20processing%20by%20high-pressure%20torsion&rft.jtitle=Journal%20of%20materials%20science&rft.au=Zhang,%20G.%20F.&rft.date=2013-07-01&rft.volume=48&rft.issue=13&rft.spage=4613&rft.epage=4619&rft.pages=4613-4619&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-013-7153-8&rft_dat=%3Cgale_proqu%3EA373747604%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c488t-beefd8b0b8314d6e71fba932db6cce1c32f492dcbc87716ce70d02f2d5812ec73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2259724471&rft_id=info:pmid/&rft_galeid=A373747604&rfr_iscdi=true