Loading…
Evolution of a martensitic structure in a Cu–Al alloy during processing by high-pressure torsion
A Cu-11.8 wt% Al alloy was quenched in iced water from a high temperature (850 °C) to introduce a martensitic phase and then the alloy was processed using quasi-constrained high-pressure torsion (HPT). The micro-hardness and the microstructures of the unprocessed and severely deformed materials were...
Saved in:
Published in: | Journal of materials science 2013-07, Vol.48 (13), p.4613-4619 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c488t-beefd8b0b8314d6e71fba932db6cce1c32f492dcbc87716ce70d02f2d5812ec73 |
---|---|
cites | cdi_FETCH-LOGICAL-c488t-beefd8b0b8314d6e71fba932db6cce1c32f492dcbc87716ce70d02f2d5812ec73 |
container_end_page | 4619 |
container_issue | 13 |
container_start_page | 4613 |
container_title | Journal of materials science |
container_volume | 48 |
creator | Zhang, G. F. Sauvage, X. Wang, J. T. Gao, N. Langdon, T. G. |
description | A Cu-11.8 wt% Al alloy was quenched in iced water from a high temperature (850 °C) to introduce a martensitic phase and then the alloy was processed using quasi-constrained high-pressure torsion (HPT). The micro-hardness and the microstructures of the unprocessed and severely deformed materials were investigated using a wide range of experimental techniques (X-ray diffraction, optical microscopy, scanning electron microscopy, transmission electron microscopy, and high- resolution TEM). During HPT, a stress-induced martensite–martensite transformation occurs and an
martensite phase is formed. In the deformed material, there are nanoscale deformation bands having high densities of defects and twins in the
martensite. It was observed that a high density of dislocations became pinned and accumulated in the vicinity of twin boundaries, thereby demonstrating a strong interaction between twin boundaries and dislocations during the HPT process. |
doi_str_mv | 10.1007/s10853-013-7153-8 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671371236</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A373747604</galeid><sourcerecordid>A373747604</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-beefd8b0b8314d6e71fba932db6cce1c32f492dcbc87716ce70d02f2d5812ec73</originalsourceid><addsrcrecordid>eNp1kd9qFDEUxoNYcN36AN4FvNGLqfk3k-zlslRbKAitXodM5mSbMjtZ80e6d76Db-iTNMMIUkFykcM5v-_wcT6E3lJyQQmRHxMlquUNobyRtBbqBVrRVvJGKMJfohUhjDVMdPQVep3SAyGklYyuUH_5I4wl-zDh4LDBBxMzTMlnb3HKsdhcImA_1dGu_P75aztiM47hhIcS_bTHxxgspDSX_Qnf-_19c4y1MatyiKkuPkdnzowJ3vz51-jbp8uvu6vm5svn6932prFCqdz0AG5QPekVp2LoQFLXmw1nQ99ZC9Ry5sSGDba3SkraWZBkIMyxoVWUgZV8jd4ve6un7wVS1gefLIyjmSCUpGknKZeU8a6i7_5BH0KJU3WnGWs3kglR2TW6WKi9GUH7yYUcja1vgIO3YQLna3_LJZdCdkRUwYdngspkeMx7U1LS13e3z1m6sDaGlCI4fYy-Xv-kKdFzpHqJVNdI9RypVlXDFk06zseH-Nf2_0VPOiqkmA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259724471</pqid></control><display><type>article</type><title>Evolution of a martensitic structure in a Cu–Al alloy during processing by high-pressure torsion</title><source>Springer Link</source><creator>Zhang, G. F. ; Sauvage, X. ; Wang, J. T. ; Gao, N. ; Langdon, T. G.</creator><creatorcontrib>Zhang, G. F. ; Sauvage, X. ; Wang, J. T. ; Gao, N. ; Langdon, T. G.</creatorcontrib><description>A Cu-11.8 wt% Al alloy was quenched in iced water from a high temperature (850 °C) to introduce a martensitic phase and then the alloy was processed using quasi-constrained high-pressure torsion (HPT). The micro-hardness and the microstructures of the unprocessed and severely deformed materials were investigated using a wide range of experimental techniques (X-ray diffraction, optical microscopy, scanning electron microscopy, transmission electron microscopy, and high- resolution TEM). During HPT, a stress-induced martensite–martensite transformation occurs and an
martensite phase is formed. In the deformed material, there are nanoscale deformation bands having high densities of defects and twins in the
martensite. It was observed that a high density of dislocations became pinned and accumulated in the vicinity of twin boundaries, thereby demonstrating a strong interaction between twin boundaries and dislocations during the HPT process.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-013-7153-8</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Alloys ; Aluminum base alloys ; BOUNDARIES ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Copper ; COPPER ALLOYS (40 TO 99.3 CU) ; COPPER ALUMINUM ALLOYS ; Copper base alloys ; Crystallography and Scattering Methods ; DEFORMATION ; DENSITY ; Diffraction ; Dislocation density ; Dislocation pinning ; Dislocations ; Heat treating ; High density ; High temperature ; MARTENSITE ; Martensitic transformations ; Materials Science ; Microhardness ; Microscopy ; MICROSTRUCTURES ; Nanostructure ; Nanostructured Materials ; Optical microscopy ; Polymer Sciences ; Scanning electron microscopy ; Solid Mechanics ; Strong interactions (field theory) ; Torsion ; Transmission electron microscopy ; TWIN BOUNDARIES ; Twinning (Crystallography) ; Twins ; X-rays</subject><ispartof>Journal of materials science, 2013-07, Vol.48 (13), p.4613-4619</ispartof><rights>Springer Science+Business Media New York 2013</rights><rights>COPYRIGHT 2013 Springer</rights><rights>Journal of Materials Science is a copyright of Springer, (2013). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-beefd8b0b8314d6e71fba932db6cce1c32f492dcbc87716ce70d02f2d5812ec73</citedby><cites>FETCH-LOGICAL-c488t-beefd8b0b8314d6e71fba932db6cce1c32f492dcbc87716ce70d02f2d5812ec73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Zhang, G. F.</creatorcontrib><creatorcontrib>Sauvage, X.</creatorcontrib><creatorcontrib>Wang, J. T.</creatorcontrib><creatorcontrib>Gao, N.</creatorcontrib><creatorcontrib>Langdon, T. G.</creatorcontrib><title>Evolution of a martensitic structure in a Cu–Al alloy during processing by high-pressure torsion</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>A Cu-11.8 wt% Al alloy was quenched in iced water from a high temperature (850 °C) to introduce a martensitic phase and then the alloy was processed using quasi-constrained high-pressure torsion (HPT). The micro-hardness and the microstructures of the unprocessed and severely deformed materials were investigated using a wide range of experimental techniques (X-ray diffraction, optical microscopy, scanning electron microscopy, transmission electron microscopy, and high- resolution TEM). During HPT, a stress-induced martensite–martensite transformation occurs and an
martensite phase is formed. In the deformed material, there are nanoscale deformation bands having high densities of defects and twins in the
martensite. It was observed that a high density of dislocations became pinned and accumulated in the vicinity of twin boundaries, thereby demonstrating a strong interaction between twin boundaries and dislocations during the HPT process.</description><subject>Alloys</subject><subject>Aluminum base alloys</subject><subject>BOUNDARIES</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Copper</subject><subject>COPPER ALLOYS (40 TO 99.3 CU)</subject><subject>COPPER ALUMINUM ALLOYS</subject><subject>Copper base alloys</subject><subject>Crystallography and Scattering Methods</subject><subject>DEFORMATION</subject><subject>DENSITY</subject><subject>Diffraction</subject><subject>Dislocation density</subject><subject>Dislocation pinning</subject><subject>Dislocations</subject><subject>Heat treating</subject><subject>High density</subject><subject>High temperature</subject><subject>MARTENSITE</subject><subject>Martensitic transformations</subject><subject>Materials Science</subject><subject>Microhardness</subject><subject>Microscopy</subject><subject>MICROSTRUCTURES</subject><subject>Nanostructure</subject><subject>Nanostructured Materials</subject><subject>Optical microscopy</subject><subject>Polymer Sciences</subject><subject>Scanning electron microscopy</subject><subject>Solid Mechanics</subject><subject>Strong interactions (field theory)</subject><subject>Torsion</subject><subject>Transmission electron microscopy</subject><subject>TWIN BOUNDARIES</subject><subject>Twinning (Crystallography)</subject><subject>Twins</subject><subject>X-rays</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kd9qFDEUxoNYcN36AN4FvNGLqfk3k-zlslRbKAitXodM5mSbMjtZ80e6d76Db-iTNMMIUkFykcM5v-_wcT6E3lJyQQmRHxMlquUNobyRtBbqBVrRVvJGKMJfohUhjDVMdPQVep3SAyGklYyuUH_5I4wl-zDh4LDBBxMzTMlnb3HKsdhcImA_1dGu_P75aztiM47hhIcS_bTHxxgspDSX_Qnf-_19c4y1MatyiKkuPkdnzowJ3vz51-jbp8uvu6vm5svn6932prFCqdz0AG5QPekVp2LoQFLXmw1nQ99ZC9Ry5sSGDba3SkraWZBkIMyxoVWUgZV8jd4ve6un7wVS1gefLIyjmSCUpGknKZeU8a6i7_5BH0KJU3WnGWs3kglR2TW6WKi9GUH7yYUcja1vgIO3YQLna3_LJZdCdkRUwYdngspkeMx7U1LS13e3z1m6sDaGlCI4fYy-Xv-kKdFzpHqJVNdI9RypVlXDFk06zseH-Nf2_0VPOiqkmA</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Zhang, G. F.</creator><creator>Sauvage, X.</creator><creator>Wang, J. T.</creator><creator>Gao, N.</creator><creator>Langdon, T. G.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7QF</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8G</scope><scope>JG9</scope></search><sort><creationdate>20130701</creationdate><title>Evolution of a martensitic structure in a Cu–Al alloy during processing by high-pressure torsion</title><author>Zhang, G. F. ; Sauvage, X. ; Wang, J. T. ; Gao, N. ; Langdon, T. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-beefd8b0b8314d6e71fba932db6cce1c32f492dcbc87716ce70d02f2d5812ec73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Alloys</topic><topic>Aluminum base alloys</topic><topic>BOUNDARIES</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Copper</topic><topic>COPPER ALLOYS (40 TO 99.3 CU)</topic><topic>COPPER ALUMINUM ALLOYS</topic><topic>Copper base alloys</topic><topic>Crystallography and Scattering Methods</topic><topic>DEFORMATION</topic><topic>DENSITY</topic><topic>Diffraction</topic><topic>Dislocation density</topic><topic>Dislocation pinning</topic><topic>Dislocations</topic><topic>Heat treating</topic><topic>High density</topic><topic>High temperature</topic><topic>MARTENSITE</topic><topic>Martensitic transformations</topic><topic>Materials Science</topic><topic>Microhardness</topic><topic>Microscopy</topic><topic>MICROSTRUCTURES</topic><topic>Nanostructure</topic><topic>Nanostructured Materials</topic><topic>Optical microscopy</topic><topic>Polymer Sciences</topic><topic>Scanning electron microscopy</topic><topic>Solid Mechanics</topic><topic>Strong interactions (field theory)</topic><topic>Torsion</topic><topic>Transmission electron microscopy</topic><topic>TWIN BOUNDARIES</topic><topic>Twinning (Crystallography)</topic><topic>Twins</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, G. F.</creatorcontrib><creatorcontrib>Sauvage, X.</creatorcontrib><creatorcontrib>Wang, J. T.</creatorcontrib><creatorcontrib>Gao, N.</creatorcontrib><creatorcontrib>Langdon, T. G.</creatorcontrib><collection>CrossRef</collection><collection>Science In Context</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Database (Proquest)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, G. F.</au><au>Sauvage, X.</au><au>Wang, J. T.</au><au>Gao, N.</au><au>Langdon, T. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of a martensitic structure in a Cu–Al alloy during processing by high-pressure torsion</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2013-07-01</date><risdate>2013</risdate><volume>48</volume><issue>13</issue><spage>4613</spage><epage>4619</epage><pages>4613-4619</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>A Cu-11.8 wt% Al alloy was quenched in iced water from a high temperature (850 °C) to introduce a martensitic phase and then the alloy was processed using quasi-constrained high-pressure torsion (HPT). The micro-hardness and the microstructures of the unprocessed and severely deformed materials were investigated using a wide range of experimental techniques (X-ray diffraction, optical microscopy, scanning electron microscopy, transmission electron microscopy, and high- resolution TEM). During HPT, a stress-induced martensite–martensite transformation occurs and an
martensite phase is formed. In the deformed material, there are nanoscale deformation bands having high densities of defects and twins in the
martensite. It was observed that a high density of dislocations became pinned and accumulated in the vicinity of twin boundaries, thereby demonstrating a strong interaction between twin boundaries and dislocations during the HPT process.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10853-013-7153-8</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2013-07, Vol.48 (13), p.4613-4619 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671371236 |
source | Springer Link |
subjects | Alloys Aluminum base alloys BOUNDARIES Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Copper COPPER ALLOYS (40 TO 99.3 CU) COPPER ALUMINUM ALLOYS Copper base alloys Crystallography and Scattering Methods DEFORMATION DENSITY Diffraction Dislocation density Dislocation pinning Dislocations Heat treating High density High temperature MARTENSITE Martensitic transformations Materials Science Microhardness Microscopy MICROSTRUCTURES Nanostructure Nanostructured Materials Optical microscopy Polymer Sciences Scanning electron microscopy Solid Mechanics Strong interactions (field theory) Torsion Transmission electron microscopy TWIN BOUNDARIES Twinning (Crystallography) Twins X-rays |
title | Evolution of a martensitic structure in a Cu–Al alloy during processing by high-pressure torsion |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A44%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20a%20martensitic%20structure%20in%20a%20Cu%E2%80%93Al%20alloy%20during%20processing%20by%20high-pressure%20torsion&rft.jtitle=Journal%20of%20materials%20science&rft.au=Zhang,%20G.%20F.&rft.date=2013-07-01&rft.volume=48&rft.issue=13&rft.spage=4613&rft.epage=4619&rft.pages=4613-4619&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-013-7153-8&rft_dat=%3Cgale_proqu%3EA373747604%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c488t-beefd8b0b8314d6e71fba932db6cce1c32f492dcbc87716ce70d02f2d5812ec73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2259724471&rft_id=info:pmid/&rft_galeid=A373747604&rfr_iscdi=true |