Loading…
tuPOY: Epitomizing a New Epoch in Communications With Polymer Textiles
The paper presents a new paradigm from the perspective of pervasive on-body computing through an innovative polymerized textile, which exhibits sensing and radiation properties. A radical, first of its kind, sensor fabricated from unsaturated polymer resin textile, establishes a dynamic link connect...
Saved in:
Published in: | Proceedings of the IEEE 2012-11, Vol.100 (11), p.3079-3098 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The paper presents a new paradigm from the perspective of pervasive on-body computing through an innovative polymerized textile, which exhibits sensing and radiation properties. A radical, first of its kind, sensor fabricated from unsaturated polymer resin textile, establishes a dynamic link connecting human thermodynamics to electrical ambiance. A dynamic fabrication process of esterification and η-polymerization is developed, which is articulately arrested using an innovatively formulated retardant, yielding a permanent thermally unstable partially oriented yarn (tuPOY). A prudently established nontrivial interchange phenomenon is founded, presenting an inimitable calibration mechanism of the sensors and charting a novel relationship of exuberated energy to lattice kinetics of tuPOY. This meticulously researched conducting medium of tuPOY, fabricated from aromatic polyamides, also presents an avant-garde architecture for proliferation of electrical and thermal signals concomitantly between the sensors and its transmission circuit. A power generating unit (PGU) delineates the power mining from thermal energy dissipated from the body, presenting a new dimension in operational power dynamics. A textile composite antenna is premeditated exclusively from radiating tuPOY-based patch and substrate, an archetype reporting in published literature. The judiciously designed antenna, with tuPOY coupled as its patch, and substrate operate as shields against the radiations directed towards the body leading to a self-sustained sculpt. The back-end hardware of the test setup conceptualizes an automated physician machine (APM) presenting a standalone architecture. The artificial intelligence core of APM is modeled on weighted multiclass support vector machines (wmSVMs). The capturing of signal variations, devoid of any metallic components, presents a singular facet of research and amalgamates various interdisciplinary fields, while providing a robust architecture with minimum tradeoffs. |
---|---|
ISSN: | 0018-9219 1558-2256 |
DOI: | 10.1109/JPROC.2011.2178009 |