Loading…
LOWER BOUNDS ON STREAMING ALGORITHMS FOR APPROXIMATING THE LENGTH OF THE LONGEST INCREASING SUBSEQUENCE
We show that any deterministic streaming algorithm that makes a constant number of passes over the input and gives a constant factor approximation of the length of the longest increasing subsequence in a sequence of length n must use space ... This proves a conjecture made by Gopalan et al. [Proceed...
Saved in:
Published in: | SIAM journal on computing 2010-01, Vol.39 (7-8), p.3463-3479 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c420t-844a60cd9108ab95f6b59203343afcd376b541ce4fd8fdb7770cab94855232083 |
---|---|
cites | cdi_FETCH-LOGICAL-c420t-844a60cd9108ab95f6b59203343afcd376b541ce4fd8fdb7770cab94855232083 |
container_end_page | 3479 |
container_issue | 7-8 |
container_start_page | 3463 |
container_title | SIAM journal on computing |
container_volume | 39 |
creator | GAL, Anna GOPALAN, Parikshit |
description | We show that any deterministic streaming algorithm that makes a constant number of passes over the input and gives a constant factor approximation of the length of the longest increasing subsequence in a sequence of length n must use space ... This proves a conjecture made by Gopalan et al. [Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, 2007, pp. 318-327] who proved a matching upper bound. Our results yield asymptotically tight lower bounds for all approximation factors, thus resolving the main open problem from their paper. Our proof is based on analyzing a related communication problem and proving a direct sum type property for it.(ProQuest: ... denotes formulae/symbols omitted.) [PUBLICATION ABSTRACT] |
doi_str_mv | 10.1137/090770801 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671380279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2412701951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-844a60cd9108ab95f6b59203343afcd376b541ce4fd8fdb7770cab94855232083</originalsourceid><addsrcrecordid>eNpdkM1OwzAQhC0EEqVw4A0sJCQ4BNaxU8fHUNw0UhqXJBXcItdNUKv-EbcH3h5XrXrgtBrtt6PZQeiewAshlL-CAM4hBHKBOgRE4HFCyCXqAAjuBVTwa3Rj7QKAMEZoB32n6lPm-E1NsvcCqwwXZS6jUZLFOEpjlSflcFTggcpxNB7n6isZReVhWQ4lTmUWl0OsBkelslgWJU6yvnMoDlAxeSvkx0RmfXmLrhq9tPXdaXbRZCDL_tBLVZz0o9QzzIedFzKme2BmgkCopyJoetNA-EApo7oxM8qdZsTUrJmFzWzK3a_GcSwMAp_6ENIuejr6btvNz762u2o1t6ZeLvW63uxtRXqc0BB8Lhz68A9dbPbt2qWrQkcA9ARz0PMRMu3G2rZuqm07X-n2tyJQHRqvzo079vFkqK3Ry6bVazO35wOfupyMAv0DFS90yA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>880200694</pqid></control><display><type>article</type><title>LOWER BOUNDS ON STREAMING ALGORITHMS FOR APPROXIMATING THE LENGTH OF THE LONGEST INCREASING SUBSEQUENCE</title><source>EBSCOhost Business Source Ultimate</source><source>ABI/INFORM Global</source><source>LOCUS - SIAM's Online Journal Archive</source><creator>GAL, Anna ; GOPALAN, Parikshit</creator><creatorcontrib>GAL, Anna ; GOPALAN, Parikshit</creatorcontrib><description>We show that any deterministic streaming algorithm that makes a constant number of passes over the input and gives a constant factor approximation of the length of the longest increasing subsequence in a sequence of length n must use space ... This proves a conjecture made by Gopalan et al. [Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, 2007, pp. 318-327] who proved a matching upper bound. Our results yield asymptotically tight lower bounds for all approximation factors, thus resolving the main open problem from their paper. Our proof is based on analyzing a related communication problem and proving a direct sum type property for it.(ProQuest: ... denotes formulae/symbols omitted.) [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0097-5397</identifier><identifier>EISSN: 1095-7111</identifier><identifier>DOI: 10.1137/090770801</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Algorithms ; Applied sciences ; Approximation ; Asymptotic properties ; Codes ; Computation ; Computer science; control theory; systems ; Exact sciences and technology ; Lower bounds ; Mathematical analysis ; Miscellaneous ; Studies ; Symbols ; Theoretical computing ; Upper bounds</subject><ispartof>SIAM journal on computing, 2010-01, Vol.39 (7-8), p.3463-3479</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright Society for Industrial and Applied Mathematics 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-844a60cd9108ab95f6b59203343afcd376b541ce4fd8fdb7770cab94855232083</citedby><cites>FETCH-LOGICAL-c420t-844a60cd9108ab95f6b59203343afcd376b541ce4fd8fdb7770cab94855232083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/880200694?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3185,11688,27924,27925,36060,36061,44363</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23948430$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>GAL, Anna</creatorcontrib><creatorcontrib>GOPALAN, Parikshit</creatorcontrib><title>LOWER BOUNDS ON STREAMING ALGORITHMS FOR APPROXIMATING THE LENGTH OF THE LONGEST INCREASING SUBSEQUENCE</title><title>SIAM journal on computing</title><description>We show that any deterministic streaming algorithm that makes a constant number of passes over the input and gives a constant factor approximation of the length of the longest increasing subsequence in a sequence of length n must use space ... This proves a conjecture made by Gopalan et al. [Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, 2007, pp. 318-327] who proved a matching upper bound. Our results yield asymptotically tight lower bounds for all approximation factors, thus resolving the main open problem from their paper. Our proof is based on analyzing a related communication problem and proving a direct sum type property for it.(ProQuest: ... denotes formulae/symbols omitted.) [PUBLICATION ABSTRACT]</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Approximation</subject><subject>Asymptotic properties</subject><subject>Codes</subject><subject>Computation</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Lower bounds</subject><subject>Mathematical analysis</subject><subject>Miscellaneous</subject><subject>Studies</subject><subject>Symbols</subject><subject>Theoretical computing</subject><subject>Upper bounds</subject><issn>0097-5397</issn><issn>1095-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNpdkM1OwzAQhC0EEqVw4A0sJCQ4BNaxU8fHUNw0UhqXJBXcItdNUKv-EbcH3h5XrXrgtBrtt6PZQeiewAshlL-CAM4hBHKBOgRE4HFCyCXqAAjuBVTwa3Rj7QKAMEZoB32n6lPm-E1NsvcCqwwXZS6jUZLFOEpjlSflcFTggcpxNB7n6isZReVhWQ4lTmUWl0OsBkelslgWJU6yvnMoDlAxeSvkx0RmfXmLrhq9tPXdaXbRZCDL_tBLVZz0o9QzzIedFzKme2BmgkCopyJoetNA-EApo7oxM8qdZsTUrJmFzWzK3a_GcSwMAp_6ENIuejr6btvNz762u2o1t6ZeLvW63uxtRXqc0BB8Lhz68A9dbPbt2qWrQkcA9ARz0PMRMu3G2rZuqm07X-n2tyJQHRqvzo079vFkqK3Ry6bVazO35wOfupyMAv0DFS90yA</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>GAL, Anna</creator><creator>GOPALAN, Parikshit</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0W</scope><scope>U9A</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100101</creationdate><title>LOWER BOUNDS ON STREAMING ALGORITHMS FOR APPROXIMATING THE LENGTH OF THE LONGEST INCREASING SUBSEQUENCE</title><author>GAL, Anna ; GOPALAN, Parikshit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-844a60cd9108ab95f6b59203343afcd376b541ce4fd8fdb7770cab94855232083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Approximation</topic><topic>Asymptotic properties</topic><topic>Codes</topic><topic>Computation</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Lower bounds</topic><topic>Mathematical analysis</topic><topic>Miscellaneous</topic><topic>Studies</topic><topic>Symbols</topic><topic>Theoretical computing</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GAL, Anna</creatorcontrib><creatorcontrib>GOPALAN, Parikshit</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GAL, Anna</au><au>GOPALAN, Parikshit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LOWER BOUNDS ON STREAMING ALGORITHMS FOR APPROXIMATING THE LENGTH OF THE LONGEST INCREASING SUBSEQUENCE</atitle><jtitle>SIAM journal on computing</jtitle><date>2010-01-01</date><risdate>2010</risdate><volume>39</volume><issue>7-8</issue><spage>3463</spage><epage>3479</epage><pages>3463-3479</pages><issn>0097-5397</issn><eissn>1095-7111</eissn><abstract>We show that any deterministic streaming algorithm that makes a constant number of passes over the input and gives a constant factor approximation of the length of the longest increasing subsequence in a sequence of length n must use space ... This proves a conjecture made by Gopalan et al. [Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, 2007, pp. 318-327] who proved a matching upper bound. Our results yield asymptotically tight lower bounds for all approximation factors, thus resolving the main open problem from their paper. Our proof is based on analyzing a related communication problem and proving a direct sum type property for it.(ProQuest: ... denotes formulae/symbols omitted.) [PUBLICATION ABSTRACT]</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/090770801</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0097-5397 |
ispartof | SIAM journal on computing, 2010-01, Vol.39 (7-8), p.3463-3479 |
issn | 0097-5397 1095-7111 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671380279 |
source | EBSCOhost Business Source Ultimate; ABI/INFORM Global; LOCUS - SIAM's Online Journal Archive |
subjects | Algorithmics. Computability. Computer arithmetics Algorithms Applied sciences Approximation Asymptotic properties Codes Computation Computer science control theory systems Exact sciences and technology Lower bounds Mathematical analysis Miscellaneous Studies Symbols Theoretical computing Upper bounds |
title | LOWER BOUNDS ON STREAMING ALGORITHMS FOR APPROXIMATING THE LENGTH OF THE LONGEST INCREASING SUBSEQUENCE |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A44%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LOWER%20BOUNDS%20ON%20STREAMING%20ALGORITHMS%20FOR%20APPROXIMATING%20THE%20LENGTH%20OF%20THE%20LONGEST%20INCREASING%20SUBSEQUENCE&rft.jtitle=SIAM%20journal%20on%20computing&rft.au=GAL,%20Anna&rft.date=2010-01-01&rft.volume=39&rft.issue=7-8&rft.spage=3463&rft.epage=3479&rft.pages=3463-3479&rft.issn=0097-5397&rft.eissn=1095-7111&rft_id=info:doi/10.1137/090770801&rft_dat=%3Cproquest_cross%3E2412701951%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c420t-844a60cd9108ab95f6b59203343afcd376b541ce4fd8fdb7770cab94855232083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=880200694&rft_id=info:pmid/&rfr_iscdi=true |