Loading…
Portfolio selection with imperfect information: A hidden Markov model
We consider a utility‐based portfolio selection problem, where the parameters change according to a Markovian market that cannot be observed perfectly. The market consists of a riskless and many risky assets whose returns depend on the state of the unobserved market process. The states of the market...
Saved in:
Published in: | Applied stochastic models in business and industry 2011-03, Vol.27 (2), p.95-114 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3365-80d2ed1827fc2449aba10070f7163ab07e2e1e967e5df8f478a9fee7df120a243 |
---|---|
cites | cdi_FETCH-LOGICAL-c3365-80d2ed1827fc2449aba10070f7163ab07e2e1e967e5df8f478a9fee7df120a243 |
container_end_page | 114 |
container_issue | 2 |
container_start_page | 95 |
container_title | Applied stochastic models in business and industry |
container_volume | 27 |
creator | anakoglu, Ethem Ozekici, Suleyman |
description | We consider a utility‐based portfolio selection problem, where the parameters change according to a Markovian market that cannot be observed perfectly. The market consists of a riskless and many risky assets whose returns depend on the state of the unobserved market process. The states of the market describe the prevailing economic, financial, social, political or other conditions that affect the deterministic and probabilistic parameters of the model. However, investment decisions are based on the information obtained by the investors. This constitutes our observation process. Therefore, there is a Markovian market process whose states are unobserved, and a separate observation process whose states are observed by the investors who use this information to determine their portfolios. There is, of course, a probabilistic relation between the two processes. The market process is a hidden Markov chain and we use sufficient statistics to represent the state of our financial system. The problem is solved using the dynamic programming approach to obtain an explicit characterization of the optimal policy and the value function. In particular, the return‐risk frontiers of the terminal wealth are shown to have linear forms. Copyright © 2011 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/asmb.885 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671380420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671380420</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3365-80d2ed1827fc2449aba10070f7163ab07e2e1e967e5df8f478a9fee7df120a243</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqUg8QlesgnYjhM77EopLagFxHNpuclYNSRxsVNK_56UIhALVjOaObq6OggdUnJMCWEnOlTTYymTLdShCUsjTliy_bXziGaE76K9EF4IoZQL2kGDW-cb40rrcIAS8sa6Gi9tM8O2moM37QXb2jhf6fXrFPfwzBYF1Hii_at7x5UroNxHO0aXAQ6-Zxc9Xgwe-qNofDO87PfGUR7HaRJJUjAoqGTC5IzzTE9121kQI2ga6ykRwIBClgpICiMNF1JnBkAUhjKiGY-76GiTO_fubQGhUZUNOZSlrsEtgqKpoLEknJFfNPcuBA9Gzb2ttF8pStTalFqbUq2pFo026NKWsPqXU737ydkf3oYGPn741odKRSwS9Xw9VE-jOy4m51JdxZ-JAnl4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671380420</pqid></control><display><type>article</type><title>Portfolio selection with imperfect information: A hidden Markov model</title><source>Business Source Ultimate</source><source>Wiley-Blackwell Read & Publish Collection</source><creator>anakoglu, Ethem ; Ozekici, Suleyman</creator><creatorcontrib>anakoglu, Ethem ; Ozekici, Suleyman</creatorcontrib><description>We consider a utility‐based portfolio selection problem, where the parameters change according to a Markovian market that cannot be observed perfectly. The market consists of a riskless and many risky assets whose returns depend on the state of the unobserved market process. The states of the market describe the prevailing economic, financial, social, political or other conditions that affect the deterministic and probabilistic parameters of the model. However, investment decisions are based on the information obtained by the investors. This constitutes our observation process. Therefore, there is a Markovian market process whose states are unobserved, and a separate observation process whose states are observed by the investors who use this information to determine their portfolios. There is, of course, a probabilistic relation between the two processes. The market process is a hidden Markov chain and we use sufficient statistics to represent the state of our financial system. The problem is solved using the dynamic programming approach to obtain an explicit characterization of the optimal policy and the value function. In particular, the return‐risk frontiers of the terminal wealth are shown to have linear forms. Copyright © 2011 John Wiley & Sons, Ltd.</description><identifier>ISSN: 1524-1904</identifier><identifier>ISSN: 1526-4025</identifier><identifier>EISSN: 1526-4025</identifier><identifier>DOI: 10.1002/asmb.885</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Decisions ; dynamic programming ; Dynamical systems ; Economics ; hidden Markov chain ; Markets ; Mathematical models ; Policies ; portfolio optimization ; Probabilistic methods ; Probability theory ; sufficient statistics</subject><ispartof>Applied stochastic models in business and industry, 2011-03, Vol.27 (2), p.95-114</ispartof><rights>Copyright © 2011 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3365-80d2ed1827fc2449aba10070f7163ab07e2e1e967e5df8f478a9fee7df120a243</citedby><cites>FETCH-LOGICAL-c3365-80d2ed1827fc2449aba10070f7163ab07e2e1e967e5df8f478a9fee7df120a243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>anakoglu, Ethem</creatorcontrib><creatorcontrib>Ozekici, Suleyman</creatorcontrib><title>Portfolio selection with imperfect information: A hidden Markov model</title><title>Applied stochastic models in business and industry</title><addtitle>Appl. Stochastic Models Bus. Ind</addtitle><description>We consider a utility‐based portfolio selection problem, where the parameters change according to a Markovian market that cannot be observed perfectly. The market consists of a riskless and many risky assets whose returns depend on the state of the unobserved market process. The states of the market describe the prevailing economic, financial, social, political or other conditions that affect the deterministic and probabilistic parameters of the model. However, investment decisions are based on the information obtained by the investors. This constitutes our observation process. Therefore, there is a Markovian market process whose states are unobserved, and a separate observation process whose states are observed by the investors who use this information to determine their portfolios. There is, of course, a probabilistic relation between the two processes. The market process is a hidden Markov chain and we use sufficient statistics to represent the state of our financial system. The problem is solved using the dynamic programming approach to obtain an explicit characterization of the optimal policy and the value function. In particular, the return‐risk frontiers of the terminal wealth are shown to have linear forms. Copyright © 2011 John Wiley & Sons, Ltd.</description><subject>Decisions</subject><subject>dynamic programming</subject><subject>Dynamical systems</subject><subject>Economics</subject><subject>hidden Markov chain</subject><subject>Markets</subject><subject>Mathematical models</subject><subject>Policies</subject><subject>portfolio optimization</subject><subject>Probabilistic methods</subject><subject>Probability theory</subject><subject>sufficient statistics</subject><issn>1524-1904</issn><issn>1526-4025</issn><issn>1526-4025</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqUg8QlesgnYjhM77EopLagFxHNpuclYNSRxsVNK_56UIhALVjOaObq6OggdUnJMCWEnOlTTYymTLdShCUsjTliy_bXziGaE76K9EF4IoZQL2kGDW-cb40rrcIAS8sa6Gi9tM8O2moM37QXb2jhf6fXrFPfwzBYF1Hii_at7x5UroNxHO0aXAQ6-Zxc9Xgwe-qNofDO87PfGUR7HaRJJUjAoqGTC5IzzTE9121kQI2ga6ykRwIBClgpICiMNF1JnBkAUhjKiGY-76GiTO_fubQGhUZUNOZSlrsEtgqKpoLEknJFfNPcuBA9Gzb2ttF8pStTalFqbUq2pFo026NKWsPqXU737ydkf3oYGPn741odKRSwS9Xw9VE-jOy4m51JdxZ-JAnl4</recordid><startdate>201103</startdate><enddate>201103</enddate><creator>anakoglu, Ethem</creator><creator>Ozekici, Suleyman</creator><general>John Wiley & Sons, Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TA</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201103</creationdate><title>Portfolio selection with imperfect information: A hidden Markov model</title><author>anakoglu, Ethem ; Ozekici, Suleyman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3365-80d2ed1827fc2449aba10070f7163ab07e2e1e967e5df8f478a9fee7df120a243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Decisions</topic><topic>dynamic programming</topic><topic>Dynamical systems</topic><topic>Economics</topic><topic>hidden Markov chain</topic><topic>Markets</topic><topic>Mathematical models</topic><topic>Policies</topic><topic>portfolio optimization</topic><topic>Probabilistic methods</topic><topic>Probability theory</topic><topic>sufficient statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>anakoglu, Ethem</creatorcontrib><creatorcontrib>Ozekici, Suleyman</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Materials Business File</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied stochastic models in business and industry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>anakoglu, Ethem</au><au>Ozekici, Suleyman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Portfolio selection with imperfect information: A hidden Markov model</atitle><jtitle>Applied stochastic models in business and industry</jtitle><addtitle>Appl. Stochastic Models Bus. Ind</addtitle><date>2011-03</date><risdate>2011</risdate><volume>27</volume><issue>2</issue><spage>95</spage><epage>114</epage><pages>95-114</pages><issn>1524-1904</issn><issn>1526-4025</issn><eissn>1526-4025</eissn><abstract>We consider a utility‐based portfolio selection problem, where the parameters change according to a Markovian market that cannot be observed perfectly. The market consists of a riskless and many risky assets whose returns depend on the state of the unobserved market process. The states of the market describe the prevailing economic, financial, social, political or other conditions that affect the deterministic and probabilistic parameters of the model. However, investment decisions are based on the information obtained by the investors. This constitutes our observation process. Therefore, there is a Markovian market process whose states are unobserved, and a separate observation process whose states are observed by the investors who use this information to determine their portfolios. There is, of course, a probabilistic relation between the two processes. The market process is a hidden Markov chain and we use sufficient statistics to represent the state of our financial system. The problem is solved using the dynamic programming approach to obtain an explicit characterization of the optimal policy and the value function. In particular, the return‐risk frontiers of the terminal wealth are shown to have linear forms. Copyright © 2011 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/asmb.885</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1524-1904 |
ispartof | Applied stochastic models in business and industry, 2011-03, Vol.27 (2), p.95-114 |
issn | 1524-1904 1526-4025 1526-4025 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671380420 |
source | Business Source Ultimate; Wiley-Blackwell Read & Publish Collection |
subjects | Decisions dynamic programming Dynamical systems Economics hidden Markov chain Markets Mathematical models Policies portfolio optimization Probabilistic methods Probability theory sufficient statistics |
title | Portfolio selection with imperfect information: A hidden Markov model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A54%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Portfolio%20selection%20with%20imperfect%20information:%20A%20hidden%20Markov%20model&rft.jtitle=Applied%20stochastic%20models%20in%20business%20and%20industry&rft.au=anakoglu,%20Ethem&rft.date=2011-03&rft.volume=27&rft.issue=2&rft.spage=95&rft.epage=114&rft.pages=95-114&rft.issn=1524-1904&rft.eissn=1526-4025&rft_id=info:doi/10.1002/asmb.885&rft_dat=%3Cproquest_cross%3E1671380420%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3365-80d2ed1827fc2449aba10070f7163ab07e2e1e967e5df8f478a9fee7df120a243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671380420&rft_id=info:pmid/&rfr_iscdi=true |