Loading…

Portfolio selection with imperfect information: A hidden Markov model

We consider a utility‐based portfolio selection problem, where the parameters change according to a Markovian market that cannot be observed perfectly. The market consists of a riskless and many risky assets whose returns depend on the state of the unobserved market process. The states of the market...

Full description

Saved in:
Bibliographic Details
Published in:Applied stochastic models in business and industry 2011-03, Vol.27 (2), p.95-114
Main Authors: anakoglu, Ethem, Ozekici, Suleyman
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3365-80d2ed1827fc2449aba10070f7163ab07e2e1e967e5df8f478a9fee7df120a243
cites cdi_FETCH-LOGICAL-c3365-80d2ed1827fc2449aba10070f7163ab07e2e1e967e5df8f478a9fee7df120a243
container_end_page 114
container_issue 2
container_start_page 95
container_title Applied stochastic models in business and industry
container_volume 27
creator anakoglu, Ethem
Ozekici, Suleyman
description We consider a utility‐based portfolio selection problem, where the parameters change according to a Markovian market that cannot be observed perfectly. The market consists of a riskless and many risky assets whose returns depend on the state of the unobserved market process. The states of the market describe the prevailing economic, financial, social, political or other conditions that affect the deterministic and probabilistic parameters of the model. However, investment decisions are based on the information obtained by the investors. This constitutes our observation process. Therefore, there is a Markovian market process whose states are unobserved, and a separate observation process whose states are observed by the investors who use this information to determine their portfolios. There is, of course, a probabilistic relation between the two processes. The market process is a hidden Markov chain and we use sufficient statistics to represent the state of our financial system. The problem is solved using the dynamic programming approach to obtain an explicit characterization of the optimal policy and the value function. In particular, the return‐risk frontiers of the terminal wealth are shown to have linear forms. Copyright © 2011 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/asmb.885
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671380420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671380420</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3365-80d2ed1827fc2449aba10070f7163ab07e2e1e967e5df8f478a9fee7df120a243</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqUg8QlesgnYjhM77EopLagFxHNpuclYNSRxsVNK_56UIhALVjOaObq6OggdUnJMCWEnOlTTYymTLdShCUsjTliy_bXziGaE76K9EF4IoZQL2kGDW-cb40rrcIAS8sa6Gi9tM8O2moM37QXb2jhf6fXrFPfwzBYF1Hii_at7x5UroNxHO0aXAQ6-Zxc9Xgwe-qNofDO87PfGUR7HaRJJUjAoqGTC5IzzTE9121kQI2ga6ykRwIBClgpICiMNF1JnBkAUhjKiGY-76GiTO_fubQGhUZUNOZSlrsEtgqKpoLEknJFfNPcuBA9Gzb2ttF8pStTalFqbUq2pFo026NKWsPqXU737ydkf3oYGPn741odKRSwS9Xw9VE-jOy4m51JdxZ-JAnl4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671380420</pqid></control><display><type>article</type><title>Portfolio selection with imperfect information: A hidden Markov model</title><source>Business Source Ultimate</source><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>anakoglu, Ethem ; Ozekici, Suleyman</creator><creatorcontrib>anakoglu, Ethem ; Ozekici, Suleyman</creatorcontrib><description>We consider a utility‐based portfolio selection problem, where the parameters change according to a Markovian market that cannot be observed perfectly. The market consists of a riskless and many risky assets whose returns depend on the state of the unobserved market process. The states of the market describe the prevailing economic, financial, social, political or other conditions that affect the deterministic and probabilistic parameters of the model. However, investment decisions are based on the information obtained by the investors. This constitutes our observation process. Therefore, there is a Markovian market process whose states are unobserved, and a separate observation process whose states are observed by the investors who use this information to determine their portfolios. There is, of course, a probabilistic relation between the two processes. The market process is a hidden Markov chain and we use sufficient statistics to represent the state of our financial system. The problem is solved using the dynamic programming approach to obtain an explicit characterization of the optimal policy and the value function. In particular, the return‐risk frontiers of the terminal wealth are shown to have linear forms. Copyright © 2011 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 1524-1904</identifier><identifier>ISSN: 1526-4025</identifier><identifier>EISSN: 1526-4025</identifier><identifier>DOI: 10.1002/asmb.885</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Decisions ; dynamic programming ; Dynamical systems ; Economics ; hidden Markov chain ; Markets ; Mathematical models ; Policies ; portfolio optimization ; Probabilistic methods ; Probability theory ; sufficient statistics</subject><ispartof>Applied stochastic models in business and industry, 2011-03, Vol.27 (2), p.95-114</ispartof><rights>Copyright © 2011 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3365-80d2ed1827fc2449aba10070f7163ab07e2e1e967e5df8f478a9fee7df120a243</citedby><cites>FETCH-LOGICAL-c3365-80d2ed1827fc2449aba10070f7163ab07e2e1e967e5df8f478a9fee7df120a243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>anakoglu, Ethem</creatorcontrib><creatorcontrib>Ozekici, Suleyman</creatorcontrib><title>Portfolio selection with imperfect information: A hidden Markov model</title><title>Applied stochastic models in business and industry</title><addtitle>Appl. Stochastic Models Bus. Ind</addtitle><description>We consider a utility‐based portfolio selection problem, where the parameters change according to a Markovian market that cannot be observed perfectly. The market consists of a riskless and many risky assets whose returns depend on the state of the unobserved market process. The states of the market describe the prevailing economic, financial, social, political or other conditions that affect the deterministic and probabilistic parameters of the model. However, investment decisions are based on the information obtained by the investors. This constitutes our observation process. Therefore, there is a Markovian market process whose states are unobserved, and a separate observation process whose states are observed by the investors who use this information to determine their portfolios. There is, of course, a probabilistic relation between the two processes. The market process is a hidden Markov chain and we use sufficient statistics to represent the state of our financial system. The problem is solved using the dynamic programming approach to obtain an explicit characterization of the optimal policy and the value function. In particular, the return‐risk frontiers of the terminal wealth are shown to have linear forms. Copyright © 2011 John Wiley &amp; Sons, Ltd.</description><subject>Decisions</subject><subject>dynamic programming</subject><subject>Dynamical systems</subject><subject>Economics</subject><subject>hidden Markov chain</subject><subject>Markets</subject><subject>Mathematical models</subject><subject>Policies</subject><subject>portfolio optimization</subject><subject>Probabilistic methods</subject><subject>Probability theory</subject><subject>sufficient statistics</subject><issn>1524-1904</issn><issn>1526-4025</issn><issn>1526-4025</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqUg8QlesgnYjhM77EopLagFxHNpuclYNSRxsVNK_56UIhALVjOaObq6OggdUnJMCWEnOlTTYymTLdShCUsjTliy_bXziGaE76K9EF4IoZQL2kGDW-cb40rrcIAS8sa6Gi9tM8O2moM37QXb2jhf6fXrFPfwzBYF1Hii_at7x5UroNxHO0aXAQ6-Zxc9Xgwe-qNofDO87PfGUR7HaRJJUjAoqGTC5IzzTE9121kQI2ga6ykRwIBClgpICiMNF1JnBkAUhjKiGY-76GiTO_fubQGhUZUNOZSlrsEtgqKpoLEknJFfNPcuBA9Gzb2ttF8pStTalFqbUq2pFo026NKWsPqXU737ydkf3oYGPn741odKRSwS9Xw9VE-jOy4m51JdxZ-JAnl4</recordid><startdate>201103</startdate><enddate>201103</enddate><creator>anakoglu, Ethem</creator><creator>Ozekici, Suleyman</creator><general>John Wiley &amp; Sons, Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TA</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201103</creationdate><title>Portfolio selection with imperfect information: A hidden Markov model</title><author>anakoglu, Ethem ; Ozekici, Suleyman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3365-80d2ed1827fc2449aba10070f7163ab07e2e1e967e5df8f478a9fee7df120a243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Decisions</topic><topic>dynamic programming</topic><topic>Dynamical systems</topic><topic>Economics</topic><topic>hidden Markov chain</topic><topic>Markets</topic><topic>Mathematical models</topic><topic>Policies</topic><topic>portfolio optimization</topic><topic>Probabilistic methods</topic><topic>Probability theory</topic><topic>sufficient statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>anakoglu, Ethem</creatorcontrib><creatorcontrib>Ozekici, Suleyman</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Materials Business File</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied stochastic models in business and industry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>anakoglu, Ethem</au><au>Ozekici, Suleyman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Portfolio selection with imperfect information: A hidden Markov model</atitle><jtitle>Applied stochastic models in business and industry</jtitle><addtitle>Appl. Stochastic Models Bus. Ind</addtitle><date>2011-03</date><risdate>2011</risdate><volume>27</volume><issue>2</issue><spage>95</spage><epage>114</epage><pages>95-114</pages><issn>1524-1904</issn><issn>1526-4025</issn><eissn>1526-4025</eissn><abstract>We consider a utility‐based portfolio selection problem, where the parameters change according to a Markovian market that cannot be observed perfectly. The market consists of a riskless and many risky assets whose returns depend on the state of the unobserved market process. The states of the market describe the prevailing economic, financial, social, political or other conditions that affect the deterministic and probabilistic parameters of the model. However, investment decisions are based on the information obtained by the investors. This constitutes our observation process. Therefore, there is a Markovian market process whose states are unobserved, and a separate observation process whose states are observed by the investors who use this information to determine their portfolios. There is, of course, a probabilistic relation between the two processes. The market process is a hidden Markov chain and we use sufficient statistics to represent the state of our financial system. The problem is solved using the dynamic programming approach to obtain an explicit characterization of the optimal policy and the value function. In particular, the return‐risk frontiers of the terminal wealth are shown to have linear forms. Copyright © 2011 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/asmb.885</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1524-1904
ispartof Applied stochastic models in business and industry, 2011-03, Vol.27 (2), p.95-114
issn 1524-1904
1526-4025
1526-4025
language eng
recordid cdi_proquest_miscellaneous_1671380420
source Business Source Ultimate; Wiley-Blackwell Read & Publish Collection
subjects Decisions
dynamic programming
Dynamical systems
Economics
hidden Markov chain
Markets
Mathematical models
Policies
portfolio optimization
Probabilistic methods
Probability theory
sufficient statistics
title Portfolio selection with imperfect information: A hidden Markov model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A54%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Portfolio%20selection%20with%20imperfect%20information:%20A%20hidden%20Markov%20model&rft.jtitle=Applied%20stochastic%20models%20in%20business%20and%20industry&rft.au=anakoglu,%20Ethem&rft.date=2011-03&rft.volume=27&rft.issue=2&rft.spage=95&rft.epage=114&rft.pages=95-114&rft.issn=1524-1904&rft.eissn=1526-4025&rft_id=info:doi/10.1002/asmb.885&rft_dat=%3Cproquest_cross%3E1671380420%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3365-80d2ed1827fc2449aba10070f7163ab07e2e1e967e5df8f478a9fee7df120a243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671380420&rft_id=info:pmid/&rfr_iscdi=true