Loading…

An Efficient Algorithm for the Computation of the UTD T Transition Function

We present an efficient algorithm for the numerical calculation of the T canonical transition function, which is encountered in the uniform geometrical theory of diffraction (UTD). Such a transition function allows the uniform ray field description of various high-frequency diffraction mechanisms, s...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on antennas and propagation 2012-05, Vol.60 (5), p.2380-2387
Main Authors: Puggelli, F., Carluccio, G., Albani, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c326t-7a562d4784fb16128864587ebd95de66b80fedfe4cc14938fe33802a9a4d4f973
cites cdi_FETCH-LOGICAL-c326t-7a562d4784fb16128864587ebd95de66b80fedfe4cc14938fe33802a9a4d4f973
container_end_page 2387
container_issue 5
container_start_page 2380
container_title IEEE transactions on antennas and propagation
container_volume 60
creator Puggelli, F.
Carluccio, G.
Albani, M.
description We present an efficient algorithm for the numerical calculation of the T canonical transition function, which is encountered in the uniform geometrical theory of diffraction (UTD). Such a transition function allows the uniform ray field description of various high-frequency diffraction mechanisms, such as double wedge or vertex diffraction. The proposed algorithm is valid for both real and imaginary arguments as required to deal with the general case in UTD applications.
doi_str_mv 10.1109/TAP.2012.2189741
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671382661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6163357</ieee_id><sourcerecordid>1671382661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-7a562d4784fb16128864587ebd95de66b80fedfe4cc14938fe33802a9a4d4f973</originalsourceid><addsrcrecordid>eNo9kL1PwzAQxS0EEqWwI7FkQWJJ8dmOY49RaQFRCYZUYrNcx6ZGSVziZOC_J_0Q0929e_ek-yF0C3gGgOVjWXzMCAYyIyBkzuAMTSDLREoIgXM0wRhEKgn_vERXMX6PIxOMTdBb0SYL57zxtu2Tov4Kne-3TeJCl_Rbm8xDsxt63fvQJsEdpHX5lJRJ2ek2-oO-HFqzb67RhdN1tDenOkXr5aKcv6Sr9-fXebFKDSW8T3OdcVKxXDC3AQ5ECM4ykdtNJbPKcr4R2NnKWWYMMEmFs5QKTLTUrGJO5nSKHo65uy78DDb2qvHR2LrWrQ1DVMBzoIJwDqMVH62mCzF21qld5xvd_SrAas9NjdzUnps6cRtP7k_pOhpdu_FP4-P_HckEB8nJ6Ls7-ry19n_NgVOa5fQPrjB07w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671382661</pqid></control><display><type>article</type><title>An Efficient Algorithm for the Computation of the UTD T Transition Function</title><source>IEEE Xplore (Online service)</source><creator>Puggelli, F. ; Carluccio, G. ; Albani, M.</creator><creatorcontrib>Puggelli, F. ; Carluccio, G. ; Albani, M.</creatorcontrib><description>We present an efficient algorithm for the numerical calculation of the T canonical transition function, which is encountered in the uniform geometrical theory of diffraction (UTD). Such a transition function allows the uniform ray field description of various high-frequency diffraction mechanisms, such as double wedge or vertex diffraction. The proposed algorithm is valid for both real and imaginary arguments as required to deal with the general case in UTD applications.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2012.2189741</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Accuracy ; Algorithms ; Antennas ; Applied classical electromagnetism ; Applied sciences ; Arrays ; Asymptotic diffraction theory ; Computation ; Diffraction ; Diffraction, scattering, reflection ; Electromagnetic wave propagation, radiowave propagation ; Electromagnetism; electron and ion optics ; Exact sciences and technology ; Force ; Fresnel reflection ; Fundamental areas of phenomenology (including applications) ; Geometrical theory of diffraction ; Gold ; Mathematical analysis ; Mathematical models ; Nickel ; Physics ; Radiocommunications ; Radiowave propagation ; Telecommunications ; Telecommunications and information theory ; uniform theory of diffraction (UTD) ; Wedges</subject><ispartof>IEEE transactions on antennas and propagation, 2012-05, Vol.60 (5), p.2380-2387</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-7a562d4784fb16128864587ebd95de66b80fedfe4cc14938fe33802a9a4d4f973</citedby><cites>FETCH-LOGICAL-c326t-7a562d4784fb16128864587ebd95de66b80fedfe4cc14938fe33802a9a4d4f973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6163357$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25861962$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Puggelli, F.</creatorcontrib><creatorcontrib>Carluccio, G.</creatorcontrib><creatorcontrib>Albani, M.</creatorcontrib><title>An Efficient Algorithm for the Computation of the UTD T Transition Function</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>We present an efficient algorithm for the numerical calculation of the T canonical transition function, which is encountered in the uniform geometrical theory of diffraction (UTD). Such a transition function allows the uniform ray field description of various high-frequency diffraction mechanisms, such as double wedge or vertex diffraction. The proposed algorithm is valid for both real and imaginary arguments as required to deal with the general case in UTD applications.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Antennas</subject><subject>Applied classical electromagnetism</subject><subject>Applied sciences</subject><subject>Arrays</subject><subject>Asymptotic diffraction theory</subject><subject>Computation</subject><subject>Diffraction</subject><subject>Diffraction, scattering, reflection</subject><subject>Electromagnetic wave propagation, radiowave propagation</subject><subject>Electromagnetism; electron and ion optics</subject><subject>Exact sciences and technology</subject><subject>Force</subject><subject>Fresnel reflection</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Geometrical theory of diffraction</subject><subject>Gold</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nickel</subject><subject>Physics</subject><subject>Radiocommunications</subject><subject>Radiowave propagation</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>uniform theory of diffraction (UTD)</subject><subject>Wedges</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNo9kL1PwzAQxS0EEqWwI7FkQWJJ8dmOY49RaQFRCYZUYrNcx6ZGSVziZOC_J_0Q0929e_ek-yF0C3gGgOVjWXzMCAYyIyBkzuAMTSDLREoIgXM0wRhEKgn_vERXMX6PIxOMTdBb0SYL57zxtu2Tov4Kne-3TeJCl_Rbm8xDsxt63fvQJsEdpHX5lJRJ2ek2-oO-HFqzb67RhdN1tDenOkXr5aKcv6Sr9-fXebFKDSW8T3OdcVKxXDC3AQ5ECM4ykdtNJbPKcr4R2NnKWWYMMEmFs5QKTLTUrGJO5nSKHo65uy78DDb2qvHR2LrWrQ1DVMBzoIJwDqMVH62mCzF21qld5xvd_SrAas9NjdzUnps6cRtP7k_pOhpdu_FP4-P_HckEB8nJ6Ls7-ry19n_NgVOa5fQPrjB07w</recordid><startdate>20120501</startdate><enddate>20120501</enddate><creator>Puggelli, F.</creator><creator>Carluccio, G.</creator><creator>Albani, M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20120501</creationdate><title>An Efficient Algorithm for the Computation of the UTD T Transition Function</title><author>Puggelli, F. ; Carluccio, G. ; Albani, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-7a562d4784fb16128864587ebd95de66b80fedfe4cc14938fe33802a9a4d4f973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Antennas</topic><topic>Applied classical electromagnetism</topic><topic>Applied sciences</topic><topic>Arrays</topic><topic>Asymptotic diffraction theory</topic><topic>Computation</topic><topic>Diffraction</topic><topic>Diffraction, scattering, reflection</topic><topic>Electromagnetic wave propagation, radiowave propagation</topic><topic>Electromagnetism; electron and ion optics</topic><topic>Exact sciences and technology</topic><topic>Force</topic><topic>Fresnel reflection</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Geometrical theory of diffraction</topic><topic>Gold</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nickel</topic><topic>Physics</topic><topic>Radiocommunications</topic><topic>Radiowave propagation</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>uniform theory of diffraction (UTD)</topic><topic>Wedges</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Puggelli, F.</creatorcontrib><creatorcontrib>Carluccio, G.</creatorcontrib><creatorcontrib>Albani, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Puggelli, F.</au><au>Carluccio, G.</au><au>Albani, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient Algorithm for the Computation of the UTD T Transition Function</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2012-05-01</date><risdate>2012</risdate><volume>60</volume><issue>5</issue><spage>2380</spage><epage>2387</epage><pages>2380-2387</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>We present an efficient algorithm for the numerical calculation of the T canonical transition function, which is encountered in the uniform geometrical theory of diffraction (UTD). Such a transition function allows the uniform ray field description of various high-frequency diffraction mechanisms, such as double wedge or vertex diffraction. The proposed algorithm is valid for both real and imaginary arguments as required to deal with the general case in UTD applications.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAP.2012.2189741</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-926X
ispartof IEEE transactions on antennas and propagation, 2012-05, Vol.60 (5), p.2380-2387
issn 0018-926X
1558-2221
language eng
recordid cdi_proquest_miscellaneous_1671382661
source IEEE Xplore (Online service)
subjects Accuracy
Algorithms
Antennas
Applied classical electromagnetism
Applied sciences
Arrays
Asymptotic diffraction theory
Computation
Diffraction
Diffraction, scattering, reflection
Electromagnetic wave propagation, radiowave propagation
Electromagnetism
electron and ion optics
Exact sciences and technology
Force
Fresnel reflection
Fundamental areas of phenomenology (including applications)
Geometrical theory of diffraction
Gold
Mathematical analysis
Mathematical models
Nickel
Physics
Radiocommunications
Radiowave propagation
Telecommunications
Telecommunications and information theory
uniform theory of diffraction (UTD)
Wedges
title An Efficient Algorithm for the Computation of the UTD T Transition Function
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T14%3A49%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20Algorithm%20for%20the%20Computation%20of%20the%20UTD%20T%20Transition%20Function&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Puggelli,%20F.&rft.date=2012-05-01&rft.volume=60&rft.issue=5&rft.spage=2380&rft.epage=2387&rft.pages=2380-2387&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2012.2189741&rft_dat=%3Cproquest_pasca%3E1671382661%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c326t-7a562d4784fb16128864587ebd95de66b80fedfe4cc14938fe33802a9a4d4f973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671382661&rft_id=info:pmid/&rft_ieee_id=6163357&rfr_iscdi=true