Loading…
An Efficient Algorithm for the Computation of the UTD T Transition Function
We present an efficient algorithm for the numerical calculation of the T canonical transition function, which is encountered in the uniform geometrical theory of diffraction (UTD). Such a transition function allows the uniform ray field description of various high-frequency diffraction mechanisms, s...
Saved in:
Published in: | IEEE transactions on antennas and propagation 2012-05, Vol.60 (5), p.2380-2387 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c326t-7a562d4784fb16128864587ebd95de66b80fedfe4cc14938fe33802a9a4d4f973 |
---|---|
cites | cdi_FETCH-LOGICAL-c326t-7a562d4784fb16128864587ebd95de66b80fedfe4cc14938fe33802a9a4d4f973 |
container_end_page | 2387 |
container_issue | 5 |
container_start_page | 2380 |
container_title | IEEE transactions on antennas and propagation |
container_volume | 60 |
creator | Puggelli, F. Carluccio, G. Albani, M. |
description | We present an efficient algorithm for the numerical calculation of the T canonical transition function, which is encountered in the uniform geometrical theory of diffraction (UTD). Such a transition function allows the uniform ray field description of various high-frequency diffraction mechanisms, such as double wedge or vertex diffraction. The proposed algorithm is valid for both real and imaginary arguments as required to deal with the general case in UTD applications. |
doi_str_mv | 10.1109/TAP.2012.2189741 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671382661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6163357</ieee_id><sourcerecordid>1671382661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-7a562d4784fb16128864587ebd95de66b80fedfe4cc14938fe33802a9a4d4f973</originalsourceid><addsrcrecordid>eNo9kL1PwzAQxS0EEqWwI7FkQWJJ8dmOY49RaQFRCYZUYrNcx6ZGSVziZOC_J_0Q0929e_ek-yF0C3gGgOVjWXzMCAYyIyBkzuAMTSDLREoIgXM0wRhEKgn_vERXMX6PIxOMTdBb0SYL57zxtu2Tov4Kne-3TeJCl_Rbm8xDsxt63fvQJsEdpHX5lJRJ2ek2-oO-HFqzb67RhdN1tDenOkXr5aKcv6Sr9-fXebFKDSW8T3OdcVKxXDC3AQ5ECM4ykdtNJbPKcr4R2NnKWWYMMEmFs5QKTLTUrGJO5nSKHo65uy78DDb2qvHR2LrWrQ1DVMBzoIJwDqMVH62mCzF21qld5xvd_SrAas9NjdzUnps6cRtP7k_pOhpdu_FP4-P_HckEB8nJ6Ls7-ry19n_NgVOa5fQPrjB07w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671382661</pqid></control><display><type>article</type><title>An Efficient Algorithm for the Computation of the UTD T Transition Function</title><source>IEEE Xplore (Online service)</source><creator>Puggelli, F. ; Carluccio, G. ; Albani, M.</creator><creatorcontrib>Puggelli, F. ; Carluccio, G. ; Albani, M.</creatorcontrib><description>We present an efficient algorithm for the numerical calculation of the T canonical transition function, which is encountered in the uniform geometrical theory of diffraction (UTD). Such a transition function allows the uniform ray field description of various high-frequency diffraction mechanisms, such as double wedge or vertex diffraction. The proposed algorithm is valid for both real and imaginary arguments as required to deal with the general case in UTD applications.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2012.2189741</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Accuracy ; Algorithms ; Antennas ; Applied classical electromagnetism ; Applied sciences ; Arrays ; Asymptotic diffraction theory ; Computation ; Diffraction ; Diffraction, scattering, reflection ; Electromagnetic wave propagation, radiowave propagation ; Electromagnetism; electron and ion optics ; Exact sciences and technology ; Force ; Fresnel reflection ; Fundamental areas of phenomenology (including applications) ; Geometrical theory of diffraction ; Gold ; Mathematical analysis ; Mathematical models ; Nickel ; Physics ; Radiocommunications ; Radiowave propagation ; Telecommunications ; Telecommunications and information theory ; uniform theory of diffraction (UTD) ; Wedges</subject><ispartof>IEEE transactions on antennas and propagation, 2012-05, Vol.60 (5), p.2380-2387</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-7a562d4784fb16128864587ebd95de66b80fedfe4cc14938fe33802a9a4d4f973</citedby><cites>FETCH-LOGICAL-c326t-7a562d4784fb16128864587ebd95de66b80fedfe4cc14938fe33802a9a4d4f973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6163357$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25861962$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Puggelli, F.</creatorcontrib><creatorcontrib>Carluccio, G.</creatorcontrib><creatorcontrib>Albani, M.</creatorcontrib><title>An Efficient Algorithm for the Computation of the UTD T Transition Function</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>We present an efficient algorithm for the numerical calculation of the T canonical transition function, which is encountered in the uniform geometrical theory of diffraction (UTD). Such a transition function allows the uniform ray field description of various high-frequency diffraction mechanisms, such as double wedge or vertex diffraction. The proposed algorithm is valid for both real and imaginary arguments as required to deal with the general case in UTD applications.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Antennas</subject><subject>Applied classical electromagnetism</subject><subject>Applied sciences</subject><subject>Arrays</subject><subject>Asymptotic diffraction theory</subject><subject>Computation</subject><subject>Diffraction</subject><subject>Diffraction, scattering, reflection</subject><subject>Electromagnetic wave propagation, radiowave propagation</subject><subject>Electromagnetism; electron and ion optics</subject><subject>Exact sciences and technology</subject><subject>Force</subject><subject>Fresnel reflection</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Geometrical theory of diffraction</subject><subject>Gold</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nickel</subject><subject>Physics</subject><subject>Radiocommunications</subject><subject>Radiowave propagation</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>uniform theory of diffraction (UTD)</subject><subject>Wedges</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNo9kL1PwzAQxS0EEqWwI7FkQWJJ8dmOY49RaQFRCYZUYrNcx6ZGSVziZOC_J_0Q0929e_ek-yF0C3gGgOVjWXzMCAYyIyBkzuAMTSDLREoIgXM0wRhEKgn_vERXMX6PIxOMTdBb0SYL57zxtu2Tov4Kne-3TeJCl_Rbm8xDsxt63fvQJsEdpHX5lJRJ2ek2-oO-HFqzb67RhdN1tDenOkXr5aKcv6Sr9-fXebFKDSW8T3OdcVKxXDC3AQ5ECM4ykdtNJbPKcr4R2NnKWWYMMEmFs5QKTLTUrGJO5nSKHo65uy78DDb2qvHR2LrWrQ1DVMBzoIJwDqMVH62mCzF21qld5xvd_SrAas9NjdzUnps6cRtP7k_pOhpdu_FP4-P_HckEB8nJ6Ls7-ry19n_NgVOa5fQPrjB07w</recordid><startdate>20120501</startdate><enddate>20120501</enddate><creator>Puggelli, F.</creator><creator>Carluccio, G.</creator><creator>Albani, M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20120501</creationdate><title>An Efficient Algorithm for the Computation of the UTD T Transition Function</title><author>Puggelli, F. ; Carluccio, G. ; Albani, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-7a562d4784fb16128864587ebd95de66b80fedfe4cc14938fe33802a9a4d4f973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Antennas</topic><topic>Applied classical electromagnetism</topic><topic>Applied sciences</topic><topic>Arrays</topic><topic>Asymptotic diffraction theory</topic><topic>Computation</topic><topic>Diffraction</topic><topic>Diffraction, scattering, reflection</topic><topic>Electromagnetic wave propagation, radiowave propagation</topic><topic>Electromagnetism; electron and ion optics</topic><topic>Exact sciences and technology</topic><topic>Force</topic><topic>Fresnel reflection</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Geometrical theory of diffraction</topic><topic>Gold</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nickel</topic><topic>Physics</topic><topic>Radiocommunications</topic><topic>Radiowave propagation</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>uniform theory of diffraction (UTD)</topic><topic>Wedges</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Puggelli, F.</creatorcontrib><creatorcontrib>Carluccio, G.</creatorcontrib><creatorcontrib>Albani, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Puggelli, F.</au><au>Carluccio, G.</au><au>Albani, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient Algorithm for the Computation of the UTD T Transition Function</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2012-05-01</date><risdate>2012</risdate><volume>60</volume><issue>5</issue><spage>2380</spage><epage>2387</epage><pages>2380-2387</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>We present an efficient algorithm for the numerical calculation of the T canonical transition function, which is encountered in the uniform geometrical theory of diffraction (UTD). Such a transition function allows the uniform ray field description of various high-frequency diffraction mechanisms, such as double wedge or vertex diffraction. The proposed algorithm is valid for both real and imaginary arguments as required to deal with the general case in UTD applications.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAP.2012.2189741</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-926X |
ispartof | IEEE transactions on antennas and propagation, 2012-05, Vol.60 (5), p.2380-2387 |
issn | 0018-926X 1558-2221 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671382661 |
source | IEEE Xplore (Online service) |
subjects | Accuracy Algorithms Antennas Applied classical electromagnetism Applied sciences Arrays Asymptotic diffraction theory Computation Diffraction Diffraction, scattering, reflection Electromagnetic wave propagation, radiowave propagation Electromagnetism electron and ion optics Exact sciences and technology Force Fresnel reflection Fundamental areas of phenomenology (including applications) Geometrical theory of diffraction Gold Mathematical analysis Mathematical models Nickel Physics Radiocommunications Radiowave propagation Telecommunications Telecommunications and information theory uniform theory of diffraction (UTD) Wedges |
title | An Efficient Algorithm for the Computation of the UTD T Transition Function |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T14%3A49%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20Algorithm%20for%20the%20Computation%20of%20the%20UTD%20T%20Transition%20Function&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Puggelli,%20F.&rft.date=2012-05-01&rft.volume=60&rft.issue=5&rft.spage=2380&rft.epage=2387&rft.pages=2380-2387&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2012.2189741&rft_dat=%3Cproquest_pasca%3E1671382661%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c326t-7a562d4784fb16128864587ebd95de66b80fedfe4cc14938fe33802a9a4d4f973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671382661&rft_id=info:pmid/&rft_ieee_id=6163357&rfr_iscdi=true |